Your browser doesn't support javascript.
loading
Cohort profile: St. Michael's Hospital Tuberculosis Database (SMH-TB), a retrospective cohort of electronic health record data and variables extracted using natural language processing.
Landsman, David; Abdelbasit, Ahmed; Wang, Christine; Guerzhoy, Michael; Joshi, Ujash; Mathew, Shaun; Pou-Prom, Chloe; Dai, David; Pequegnat, Victoria; Murray, Joshua; Chokar, Kamalprit; Banning, Michaelia; Mamdani, Muhammad; Mishra, Sharmistha; Batt, Jane.
Afiliación
  • Landsman D; MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.
  • Abdelbasit A; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
  • Wang C; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
  • Guerzhoy M; Princeton University, Princeton, New Jersey, United States of America.
  • Joshi U; University of Toronto, Toronto, Ontario, Canada.
  • Mathew S; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.
  • Pou-Prom C; University of Toronto, Toronto, Ontario, Canada.
  • Dai D; Department of Computer Science, Ryerson University, Toronto, Ontario, Canada.
  • Pequegnat V; Unity Health Toronto, Toronto, Ontario, Canada.
  • Murray J; Unity Health Toronto, Toronto, Ontario, Canada.
  • Chokar K; Decision Support Services, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.
  • Banning M; Unity Health Toronto, Toronto, Ontario, Canada.
  • Mamdani M; Division of Respirology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.
  • Mishra S; Unity Health Toronto, Toronto, Ontario, Canada.
  • Batt J; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
PLoS One ; 16(3): e0247872, 2021.
Article en En | MEDLINE | ID: mdl-33657184
BACKGROUND: Tuberculosis (TB) is a major cause of death worldwide. TB research draws heavily on clinical cohorts which can be generated using electronic health records (EHR), but granular information extracted from unstructured EHR data is limited. The St. Michael's Hospital TB database (SMH-TB) was established to address gaps in EHR-derived TB clinical cohorts and provide researchers and clinicians with detailed, granular data related to TB management and treatment. METHODS: We collected and validated multiple layers of EHR data from the TB outpatient clinic at St. Michael's Hospital, Toronto, Ontario, Canada to generate the SMH-TB database. SMH-TB contains structured data directly from the EHR, and variables generated using natural language processing (NLP) by extracting relevant information from free-text within clinic, radiology, and other notes. NLP performance was assessed using recall, precision and F1 score averaged across variable labels. We present characteristics of the cohort population using binomial proportions and 95% confidence intervals (CI), with and without adjusting for NLP misclassification errors. RESULTS: SMH-TB currently contains retrospective patient data spanning 2011 to 2018, for a total of 3298 patients (N = 3237 with at least 1 associated dictation). Performance of TB diagnosis and medication NLP rulesets surpasses 93% in recall, precision and F1 metrics, indicating good generalizability. We estimated 20% (95% CI: 18.4-21.2%) were diagnosed with active TB and 46% (95% CI: 43.8-47.2%) were diagnosed with latent TB. After adjusting for potential misclassification, the proportion of patients diagnosed with active and latent TB was 18% (95% CI: 16.8-19.7%) and 40% (95% CI: 37.8-41.6%) respectively. CONCLUSION: SMH-TB is a unique database that includes a breadth of structured data derived from structured and unstructured EHR data by using NLP rulesets. The data are available for a variety of research applications, such as clinical epidemiology, quality improvement and mathematical modeling studies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tuberculosis / Procesamiento de Lenguaje Natural / Registros Electrónicos de Salud Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Male País/Región como asunto: America do norte Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2021 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tuberculosis / Procesamiento de Lenguaje Natural / Registros Electrónicos de Salud Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Male País/Región como asunto: America do norte Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2021 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos