Your browser doesn't support javascript.
loading
Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension.
Tam, Angela Y Y; Horwell, Amy L; Trinder, Sarah L; Khan, Korsa; Xu, Shiwen; Ong, Voon; Denton, Christopher P; Norman, Jill T; Holmes, Alan M; Bou-Gharios, George; Abraham, David J.
Afiliación
  • Tam AYY; Centre for Rheumatology and Connective Tissue Disease, Department of Inflammation, Division of Medicine, University College London, London, NW3 2PF, UK. Electronic address: angela.tam@ucl.ac.uk.
  • Horwell AL; Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
  • Trinder SL; Centre for Rheumatology and Connective Tissue Disease, Department of Inflammation, Division of Medicine, University College London, London, NW3 2PF, UK.
  • Khan K; Centre for Rheumatology and Connective Tissue Disease, Department of Inflammation, Division of Medicine, University College London, London, NW3 2PF, UK.
  • Xu S; Centre for Rheumatology and Connective Tissue Disease, Department of Inflammation, Division of Medicine, University College London, London, NW3 2PF, UK.
  • Ong V; Centre for Rheumatology and Connective Tissue Disease, Department of Inflammation, Division of Medicine, University College London, London, NW3 2PF, UK.
  • Denton CP; Centre for Rheumatology and Connective Tissue Disease, Department of Inflammation, Division of Medicine, University College London, London, NW3 2PF, UK.
  • Norman JT; Department of Renal Medicine, Division of Medicine, University College London, London, NW3 2PF, UK.
  • Holmes AM; Centre for Rheumatology and Connective Tissue Disease, Department of Inflammation, Division of Medicine, University College London, London, NW3 2PF, UK.
  • Bou-Gharios G; Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
  • Abraham DJ; Centre for Rheumatology and Connective Tissue Disease, Department of Inflammation, Division of Medicine, University College London, London, NW3 2PF, UK.
Int J Biochem Cell Biol ; 134: 105961, 2021 05.
Article en En | MEDLINE | ID: mdl-33662577
Connective tissue growth factor (CTGF, CCN2) is a matricellular protein which plays key roles in normal mammalian development and in tissue homeostasis and repair. In pathological conditions, dysregulated CCN2 has been associated with cancer, cardiovascular disease, and tissue fibrosis. In this study, genetic manipulation of the CCN2 gene was employed to investigate the role of CCN2 expression in vitro and in experimentally-induced models of pulmonary fibrosis and pulmonary arterial hypertension (PAH). Knocking down CCN2 using siRNA reduced expression of pro-fibrotic markers (fibronectin p < 0.01, collagen type I p < 0.05, α-SMA p < 0.0001, TIMP-1 p < 0.05 and IL-6 p < 0.05) in TGF-ß-treated lung fibroblasts derived from systemic sclerosis patients. In vivo studies were performed in mice using a conditional gene deletion strategy targeting CCN2 in a fibroblast-specific and time-dependent manner in two models of lung disease. CCN2 deletion significantly reduced pulmonary interstitial scarring and fibrosis following bleomycin-instillation, as assessed by fibrotic scores (wildtype bleomycin 3.733 ± 0.2667 vs CCN2 knockout (KO) bleomycin 4.917 ± 0.3436, p < 0.05) and micro-CT. In the well-established chronic hypoxia/Sugen model of pulmonary hypertension, CCN2 gene deletion resulted in a significant decrease in pulmonary vessel remodelling, less right ventricular hypertrophy and a reduction in the haemodynamic measurements characteristic of PAH (RVSP and RV/LV + S were significantly reduced (p < 0.05) in CCN2 KO compared to WT mice in hypoxic/SU5416 conditions). These results support a prominent role for CCN2 in pulmonary fibrosis and in vessel remodelling associated with PAH. Therefore, therapeutics aimed at blocking CCN2 function are likely to benefit several forms of severe lung disease.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fibrosis Pulmonar / Factor de Crecimiento del Tejido Conjuntivo / Hipertensión Arterial Pulmonar Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Int J Biochem Cell Biol Asunto de la revista: BIOQUIMICA Año: 2021 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fibrosis Pulmonar / Factor de Crecimiento del Tejido Conjuntivo / Hipertensión Arterial Pulmonar Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Int J Biochem Cell Biol Asunto de la revista: BIOQUIMICA Año: 2021 Tipo del documento: Article Pais de publicación: Países Bajos