Your browser doesn't support javascript.
loading
Interactions of Sea Anemone Toxins with Insect Sodium Channel-Insights from Electrophysiology and Molecular Docking Studies.
Niklas, Beata; Jankowska, Milena; Gordon, Dalia; Béress, László; Stankiewicz, Maria; Nowak, Wieslaw.
Afiliación
  • Niklas B; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland.
  • Jankowska M; Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland.
  • Gordon D; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
  • Béress L; Department of Internal Medicine, Clinic of Immunology, Division of Experimental and Clinical Peptide Research, Hannover Medical School, 30625 Hannover, Germany.
  • Stankiewicz M; Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland.
  • Nowak W; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland.
Molecules ; 26(5)2021 Feb 28.
Article en En | MEDLINE | ID: mdl-33670972
ABSTRACT
Animal venoms are considered as a promising source of new drugs. Sea anemones release polypeptides that affect electrical activity of neurons of their prey. Voltage dependent sodium (Nav) channels are the common targets of Av1, Av2, and Av3 toxins from Anemonia viridis and CgNa from Condylactis gigantea. The toxins bind to the extracellular side of a channel and slow its fast inactivation, but molecular details of the binding modes are not known. Electrophysiological measurements on Periplaneta americana neuronal preparation revealed differences in potency of these toxins to increase nerve activity. Av1 and CgNa exhibit the strongest effects, while Av2 the weakest effect. Extensive molecular docking using a modern SMINA computer method revealed only partial overlap among the sets of toxins' and channel's amino acid residues responsible for the selectivity and binding modes. Docking positions support earlier supposition that the higher neuronal activity observed in electrophysiology should be attributed to hampering the fast inactivation gate by interactions of an anemone toxin with the voltage driven S4 helix from domain IV of cockroach Nav channel (NavPaS). Our modelling provides new data linking activity of toxins with their mode of binding in site 3 of NavPaS channel.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Ponzoñas / Canales de Sodio Límite: Animals Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Ponzoñas / Canales de Sodio Límite: Animals Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Polonia