Your browser doesn't support javascript.
loading
Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm.
Oller, Jorge; Gabandé-Rodríguez, Enrique; Ruiz-Rodríguez, María Jesús; Desdín-Micó, Gabriela; Aranda, Juan Francisco; Rodrigues-Diez, Raquel; Ballesteros-Martínez, Constanza; Blanco, Eva María; Roldan-Montero, Raquel; Acuña, Pedro; Forteza Gil, Alberto; Martín-López, Carlos E; Nistal, J Francisco; Lino Cardenas, Christian L; Lindsay, Mark Evan; Martín-Ventura, José Luís; Briones, Ana M; Redondo, Juan Miguel; Mittelbrunn, María.
Afiliación
  • Oller J; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.).
  • Gabandé-Rodríguez E; Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., M.M.).
  • Ruiz-Rodríguez MJ; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (J.O., R.R-D., R.R-M., A.M.B., J.M.R.).
  • Desdín-Micó G; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.).
  • Aranda JF; Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., M.M.).
  • Rodrigues-Diez R; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.J.R-R., J.M.R.).
  • Ballesteros-Martínez C; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.).
  • Blanco EM; Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., M.M.).
  • Roldan-Montero R; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.).
  • Acuña P; Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., M.M.).
  • Forteza Gil A; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (J.O., R.R-D., R.R-M., A.M.B., J.M.R.).
  • Martín-López CE; Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Spain (R.R-D., C.B-M., A.M.B.).
  • Nistal JF; Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Spain (R.R-D., C.B-M., A.M.B.).
  • Lino Cardenas CL; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.).
  • Lindsay ME; Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., M.M.).
  • Martín-Ventura JL; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (J.O., R.R-D., R.R-M., A.M.B., J.M.R.).
  • Briones AM; Instituto de Investigación Sanitaria-Fundación Jimenez Diaz, Madrid, Spain (R.R-M. J.L.M-V.).
  • Redondo JM; Hospital Universitario Puerta de Hierro, Madrid, Spain. (R.R-M., J.L.M-V.).
  • Mittelbrunn M; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.).
Circulation ; 143(21): 2091-2109, 2021 05 25.
Article en En | MEDLINE | ID: mdl-33709773
ABSTRACT

BACKGROUND:

Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms.

METHODS:

Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1c1039g/+) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-CreERT2Tfamflox/flox mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration.

RESULTS:

The main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1c1039g/+ mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1c1039g/+ mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1c1039g/+ mice.

CONCLUSIONS:

Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aneurisma de la Aorta / Síndrome de Marfan / Mitocondrias Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Circulation Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aneurisma de la Aorta / Síndrome de Marfan / Mitocondrias Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Circulation Año: 2021 Tipo del documento: Article