Your browser doesn't support javascript.
loading
NIK promotes metabolic adaptation of glioblastoma cells to bioenergetic stress.
Kamradt, Michael L; Jung, Ji-Ung; Pflug, Kathryn M; Lee, Dong W; Fanniel, Victor; Sitcheran, Raquel.
Afiliación
  • Kamradt ML; Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77845, USA.
  • Jung JU; Medical Sciences Graduate Program, Texas A&M University Health Science Center, College Station, TX, 77845, USA.
  • Pflug KM; Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77845, USA.
  • Lee DW; Medical Sciences Graduate Program, Texas A&M University Health Science Center, College Station, TX, 77845, USA.
  • Fanniel V; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
  • Sitcheran R; Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77845, USA.
Cell Death Dis ; 12(3): 271, 2021 03 15.
Article en En | MEDLINE | ID: mdl-33723235
ABSTRACT
Cancers, including glioblastoma multiforme (GBM), undergo coordinated reprogramming of metabolic pathways that control glycolysis and oxidative phosphorylation (OXPHOS) to promote tumor growth in diverse tumor microenvironments. Adaptation to limited nutrient availability in the microenvironment is associated with remodeling of mitochondrial morphology and bioenergetic capacity. We recently demonstrated that NF-κB-inducing kinase (NIK) regulates mitochondrial morphology to promote GBM cell invasion. Here, we show that NIK is recruited to the outer membrane of dividing mitochondria with the master fission regulator, Dynamin-related protein1 (DRP1). Moreover, glucose deprivation-mediated metabolic shift to OXPHOS increases fission and mitochondrial localization of both NIK and DRP1. NIK deficiency results in decreased mitochondrial respiration, ATP production, and spare respiratory capacity (SRC), a critical measure of mitochondrial fitness. Although IκB kinase α and ß (IKKα/ß) and NIK are required for OXPHOS in high glucose media, only NIK is required to increase SRC under glucose deprivation. Consistent with an IKK-independent role for NIK in regulating metabolism, we show that NIK phosphorylates DRP1-S616 in vitro and in vivo. Notably, a constitutively active DRP1-S616E mutant rescues oxidative metabolism, invasiveness, and tumorigenic potential in NIK-/- cells without inducing IKK. Thus, we establish that NIK is critical for bioenergetic stress responses to promote GBM cell pathogenesis independently of IKK. Our data suggest that targeting NIK may be used to exploit metabolic vulnerabilities and improve therapeutic strategies for GBM.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Proteínas Serina-Treonina Quinasas / Glioblastoma / Metabolismo Energético / Mitocondrias Límite: Humans Idioma: En Revista: Cell Death Dis Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Proteínas Serina-Treonina Quinasas / Glioblastoma / Metabolismo Energético / Mitocondrias Límite: Humans Idioma: En Revista: Cell Death Dis Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos