Your browser doesn't support javascript.
loading
Evolution of inequalities in the coronavirus pandemics in Portugal: an ecological study.
Alves, Joana; Soares, Patrícia; Rocha, João Victor; Santana, Rui; Nunes, Carla.
Afiliación
  • Alves J; Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisboa, Portugal.
  • Soares P; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisboa, Portugal.
  • Rocha JV; Comprehensive Health Research Center (CHRC), Lisboa, Portugal.
  • Santana R; Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisboa, Portugal.
  • Nunes C; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisboa, Portugal.
Eur J Public Health ; 31(5): 1069-1075, 2021 10 26.
Article en En | MEDLINE | ID: mdl-33723606
BACKGROUND: Previous literature shows systematic differences in health according to socioeconomic status (SES). However, there is no clear evidence that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection might be different across SES in Portugal. This work identifies the coronavirus disease 2019 (COVID-19) worst-affected municipalities at four different time points in Portugal measured by prevalence of cases, and seeks to determine if these worst-affected areas are associated with SES. METHODS: The worst-affected areas were defined using the spatial scan statistic for the cumulative number of cases per municipality. The likelihood of being in a worst-affected area was then modelled using logistic regressions, as a function of area-based SES and health services supply. The analyses were repeated at four different time points of the COVID-19 pandemic: 1 April, 1 May, 1 June, and 1 July, corresponding to two moments before and during the confinement period and two moments thereafter. RESULTS: Twenty municipalities were identified as worst-affected areas in all four time points, most in the coastal area in the Northern part of the country. The areas of lower unemployment were less likely to be a worst-affected area on the 1 April [adjusted odds ratio (AOR) = 0.36 (0.14-0.91)], 1 May [AOR = 0.03 (0.00-0.41)] and 1 July [AOR = 0.40 (0.16-1.05)]. CONCLUSION: This study shows a relationship between being in a worst-affected area and unemployment. Governments and public health authorities should formulate measures and be prepared to protect the most vulnerable groups.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pandemias / COVID-19 Tipo de estudio: Prevalence_studies Aspecto: Determinantes_sociais_saude / Equity_inequality Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Eur J Public Health Asunto de la revista: EPIDEMIOLOGIA / SAUDE PUBLICA Año: 2021 Tipo del documento: Article País de afiliación: Portugal Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pandemias / COVID-19 Tipo de estudio: Prevalence_studies Aspecto: Determinantes_sociais_saude / Equity_inequality Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Eur J Public Health Asunto de la revista: EPIDEMIOLOGIA / SAUDE PUBLICA Año: 2021 Tipo del documento: Article País de afiliación: Portugal Pais de publicación: Reino Unido