Your browser doesn't support javascript.
loading
A powerful subset-based method identifies gene set associations and improves interpretation in UK Biobank.
Dutta, Diptavo; VandeHaar, Peter; Fritsche, Lars G; Zöllner, Sebastian; Boehnke, Michael; Scott, Laura J; Lee, Seunggeun.
Afiliación
  • Dutta D; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA.
  • VandeHaar P; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
  • Fritsche LG; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
  • Zöllner S; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
  • Boehnke M; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
  • Scott LJ; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
  • Lee S; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; Graduate School of Data Science, Seoul National University, Seoul 08826, Republic of Korea. Electronic address: lee7801@snu.ac.kr.
Am J Hum Genet ; 108(4): 669-681, 2021 04 01.
Article en En | MEDLINE | ID: mdl-33730541
Tests of association between a phenotype and a set of genes in a biological pathway can provide insights into the genetic architecture of complex phenotypes beyond those obtained from single-variant or single-gene association analysis. However, most existing gene set tests have limited power to detect gene set-phenotype association when a small fraction of the genes are associated with the phenotype and cannot identify the potentially "active" genes that might drive a gene set-based association. To address these issues, we have developed Gene set analysis Association Using Sparse Signals (GAUSS), a method for gene set association analysis that requires only GWAS summary statistics. For each significantly associated gene set, GAUSS identifies the subset of genes that have the maximal evidence of association and can best account for the gene set association. Using pre-computed correlation structure among test statistics from a reference panel, our p value calculation is substantially faster than other permutation- or simulation-based approaches. In simulations with varying proportions of causal genes, we find that GAUSS effectively controls type 1 error rate and has greater power than several existing methods, particularly when a small proportion of genes account for the gene set signal. Using GAUSS, we analyzed UK Biobank GWAS summary statistics for 10,679 gene sets and 1,403 binary phenotypes. We found that GAUSS is scalable and identified 13,466 phenotype and gene set association pairs. Within these gene sets, we identify an average of 17.2 (max = 405) genes that underlie these gene set associations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenotipo / Interpretación Estadística de Datos / Bancos de Muestras Biológicas / Bases de Datos Genéticas / Estudio de Asociación del Genoma Completo / Conjuntos de Datos como Asunto Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Am J Hum Genet Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenotipo / Interpretación Estadística de Datos / Bancos de Muestras Biológicas / Bases de Datos Genéticas / Estudio de Asociación del Genoma Completo / Conjuntos de Datos como Asunto Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Am J Hum Genet Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos