Deep Consensus Network: Aggregating predictions to improve object detection in microscopy images.
Med Image Anal
; 70: 102019, 2021 05.
Article
en En
| MEDLINE
| ID: mdl-33730623
Detection of cells and particles in microscopy images is a common and challenging task. In recent years, detection approaches in computer vision achieved remarkable improvements by leveraging deep learning. Microscopy images pose challenges like small and clustered objects, low signal to noise, and complex shape and appearance, for which current approaches still struggle. We introduce Deep Consensus Network, a new deep neural network for object detection in microscopy images based on object centroids. Our network is trainable end-to-end and comprises a Feature Pyramid Network-based feature extractor, a Centroid Proposal Network, and a layer for ensembling detection hypotheses over all image scales and anchors. We suggest an anchor regularization scheme that favours prior anchors over regressed locations. We also propose a novel loss function based on Normalized Mutual Information to cope with strong class imbalance, which we derive within a Bayesian framework. In addition, we introduce an improved algorithm for Non-Maximum Suppression which significantly reduces the algorithmic complexity. Experiments on synthetic data are performed to provide insights into the properties of the proposed loss function and its robustness. We also applied our method to challenging data from the TUPAC16 mitosis detection challenge and the Particle Tracking Challenge, and achieved results competitive or better than state-of-the-art.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Redes Neurales de la Computación
/
Microscopía
Tipo de estudio:
Diagnostic_studies
/
Guideline
/
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Med Image Anal
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
Año:
2021
Tipo del documento:
Article
Pais de publicación:
Países Bajos