Your browser doesn't support javascript.
loading
Nonlinear delay differential equations and their application to modeling biological network motifs.
Glass, David S; Jin, Xiaofan; Riedel-Kruse, Ingmar H.
Afiliación
  • Glass DS; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
  • Jin X; Gladstone Institutes, San Francisco, CA, USA.
  • Riedel-Kruse IH; Department of Molecular and Cellular Biology, and (by courtesy) Departments of Applied Mathematics and Biomedical Engineering, University of Arizona, Tucson, AZ, USA. ingmar@arizona.edu.
Nat Commun ; 12(1): 1788, 2021 03 19.
Article en En | MEDLINE | ID: mdl-33741909
Biological regulatory systems, such as cell signaling networks, nervous systems and ecological webs, consist of complex dynamical interactions among many components. Network motif models focus on small sub-networks to provide quantitative insight into overall behavior. However, such models often overlook time delays either inherent to biological processes or associated with multi-step interactions. Here we systematically examine explicit-delay versions of the most common network motifs via delay differential equation (DDE) models, both analytically and numerically. We find many broadly applicable results, including parameter reduction versus canonical ordinary differential equation (ODE) models, analytical relations for converting between ODE and DDE models, criteria for when delays may be ignored, a complete phase space for autoregulation, universal behaviors of feedforward loops, a unified Hill-function logic framework, and conditions for oscillations and chaos. We conclude that explicit-delay modeling simplifies the phenomenology of many biological networks and may aid in discovering new functional motifs.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Dinámicas no Lineales / Biología Computacional / Redes Reguladoras de Genes / Modelos Genéticos Tipo de estudio: Prognostic_studies / Qualitative_research Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Israel Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Dinámicas no Lineales / Biología Computacional / Redes Reguladoras de Genes / Modelos Genéticos Tipo de estudio: Prognostic_studies / Qualitative_research Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Israel Pais de publicación: Reino Unido