Your browser doesn't support javascript.
loading
Lightweight pyramid network with spatial attention mechanism for accurate retinal vessel segmentation.
Tan, Tengfei; Wang, Zhilun; Du, Hongwei; Xu, Jinzhang; Qiu, Bensheng.
Afiliación
  • Tan T; University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230026, Anhui, People's Republic of China.
  • Wang Z; University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230026, Anhui, People's Republic of China.
  • Du H; University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230026, Anhui, People's Republic of China. duhw@ustc.edu.cn.
  • Xu J; School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China.
  • Qiu B; University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230026, Anhui, People's Republic of China.
Int J Comput Assist Radiol Surg ; 16(4): 673-682, 2021 Apr.
Article en En | MEDLINE | ID: mdl-33751370
PURPOSE: The morphological characteristics of retinal vessels are vital for the early diagnosis of pathological diseases such as diabetes and hypertension. However, the low contrast and complex morphology pose a challenge to automatic retinal vessel segmentation. To extract precise semantic features, more convolution and pooling operations are adopted, but some structural information is potentially ignored. METHODS: In the paper, we propose a novel lightweight pyramid network (LPN) fusing multi-scale features with spatial attention mechanism to preserve the structure information of retinal vessels. The pyramid hierarchy model is constructed to generate multi-scale representations, and its semantic features are strengthened with the introduction of the attention mechanism. The combination of multi-scale features contributes to its accurate prediction. RESULTS: The LPN is evaluated on benchmark datasets DRIVE, STARE and CHASE, and the results indicate its state-of-the-art performance (e.g., ACC of 97.09[Formula: see text]/97.49[Formula: see text]/97.48[Formula: see text], AUC of 98.79[Formula: see text]/99.01[Formula: see text]/98.91[Formula: see text] on the DRIVE, STARE and CHASE datasets, respectively). The robustness and generalization ability of the LPN are further proved in cross-training experiment. CONCLUSION: The visualization experiment reveals the semantic gap between various scales of the pyramid and verifies the effectiveness of the attention mechanism, which provide a potential basis for the pyramid hierarchy model in multi-scale vessel segmentation task. Furthermore, the number of model parameters is greatly reduced.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tractos Piramidales / Vasos Retinianos / Procesamiento de Imagen Asistido por Computador / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2021 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tractos Piramidales / Vasos Retinianos / Procesamiento de Imagen Asistido por Computador / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2021 Tipo del documento: Article Pais de publicación: Alemania