Your browser doesn't support javascript.
loading
Intelligently Thermoresponsive Ionic Liquid toward Molecular Firefighting and Thermal Energy Management.
Zhao, Pan-Pan; Deng, Cong; Zhao, Ze-Yong; Wan, Le; Huang, Chi; Wang, Yu-Zhong.
Afiliación
  • Zhao PP; State Key Laboratory of Polymer Materials Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
  • Deng C; State Key Laboratory of Polymer Materials Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
  • Zhao ZY; State Key Laboratory of Polymer Materials Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
  • Wan L; State Key Laboratory of Polymer Materials Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
  • Huang C; State Key Laboratory of Polymer Materials Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
  • Wang YZ; State Key Laboratory of Polymer Materials Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
ACS Appl Mater Interfaces ; 13(13): 15680-15689, 2021 Apr 07.
Article en En | MEDLINE | ID: mdl-33759485
ABSTRACT
Hydrocarbon-based phase change materials (PCMs) are accompanied by an inherent fire risk, which is hindering their further application especially in construction. Molecular-firefighting PCMs can be ideal and promising candidates to simultaneously ensure the highly efficient energy management and fire safety of PCMs. In this work, two novel phosphorus/nitrogen-containing ionic liquids ([DP][MI] and [DP][TEA]), composed of imidazole (MI) or triethylamine (TEA) cations and dicetyl phosphate (DP) anion, were synthesized for fire-proofing thermal energy management. The fire risk assessment confirmed that the extinguishing time of prepared [DP][MI] and [DP][TEA] was greatly shortened to 20 s and 3.5 min from 45 min for controlled sample, respectively. Moreover, the thermal enthalpy of [DP][MI] reached about 99.0 J g-1. In addition, [DP][MI] and [DP][TEA] achieved low supercooling extents of 2.2 and 4.4 °C, separately. Both molecular firefighting and efficient energy management were achieved for [DP][MI] and [DP][TEA]. As applied in wood-plastic composite which is ubiquitous in construction, [DP][TEA] endowed the composite with temperature-regulating capability of about 10 °C in hut test and remarkably suppressed fire hazard of the composite, displaying a potential application value.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: China