Your browser doesn't support javascript.
loading
Fabrication of litchi-like lignin/zinc oxide composites with enhanced antibacterial activity and their application in polyurethane films.
Wang, Yuanyuan; Wang, Huan; Li, Zhixian; Yang, Dongjie; Qiu, Xueqing; Liu, Yechen; Yan, Mengzhen; Li, Qiong.
Afiliación
  • Wang Y; School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China.
  • Wang H; School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China.
  • Li Z; School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Tech
  • Yang D; School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China. Electronic address: cedjyang@scut.edu.cn.
  • Qiu X; School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China.
  • Liu Y; School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China.
  • Yan M; School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China.
  • Li Q; School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China.
J Colloid Interface Sci ; 594: 316-325, 2021 Jul 15.
Article en En | MEDLINE | ID: mdl-33773384
ABSTRACT
Lignin has been demonstrated to be green and effective for the modification of ZnO-based materials. In this work, quaternized lignin/zinc oxide nanostructured hybrid composites (QLS/ZnO NCs) were synthesized with good dispersion and uniform particle size via a facile hydrothermal method. Sodium lignosulfonate (LS) was modified by quaternization to endow the positive charges, which effectively captured bacteria due to the electrostatic interactions. Interestingly, QLS/ZnO NCs show a litchi-like morphology consisting of nanorods with diameters of 5-10 nm, which further resulted in damage to the bacterial cell membrane. Owing to the surface charge and rough surface topology for bacterial capture, QLS/ZnO NCs exhibited greatly enhanced antibacterial activity compared with bare ZnO. After being treated with QLS/ZnO NCs for 90 min, the sterilization rates of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) reached 97.54% and 99.55%, respectively. Due to the reactive oxygen species (ROS) produced by ZnO under light irradiation, the antibacterial activity of QLS/ZnO NCs could be further enhanced. In addition, the minimal inhibition concentrations (MICs) of QLS/ZnO NCs towards E. coli and S. aureus were both 100 µg/mL, and the minimum bactericidal concentrations (MBCs) were 100 µg/mL and 200 µg/mL, respectively. Moreover, with the incorporation of QLS/ZnO NCs into polyurethane films, the composite films showed excellent antibacterial activity, strong tensile strength and enhanced ultraviolet light blocking performance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Óxido de Zinc / Litchi / Nanocompuestos Idioma: En Revista: J Colloid Interface Sci Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Óxido de Zinc / Litchi / Nanocompuestos Idioma: En Revista: J Colloid Interface Sci Año: 2021 Tipo del documento: Article País de afiliación: China