Your browser doesn't support javascript.
loading
Transient receptor potential vanilloid 2 mediates the inhibitory effect of far-infrared irradiation on adipogenic differentiation of tonsil-derived mesenchymal stem cells.
Kim, Ha Yeong; Oh, Se-Young; Choi, Young Min; Park, Jung-Hyun; Kim, Han Su; Jo, Inho.
Afiliación
  • Kim HY; Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea.
  • Oh SY; Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea.
  • Choi YM; Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea.
  • Park JH; Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea.
  • Kim HS; Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea.
  • Jo I; Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea. Electronic address: inhojo@e
Stem Cell Res ; 53: 102291, 2021 05.
Article en En | MEDLINE | ID: mdl-33780730
ABSTRACT

AIMS:

Far-infrared (FIR) irradiation inhibits adipogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs) by activating Ca2+-dependent protein phosphatase 2B (PP2B), but it stimulates osteogenic differentiation in a PP2B-independent pathway. We investigated the potential involvement of transient receptor potential vanilloid (TRPV) channels, a well-known Ca2+-permeable channel, in the effects of FIR irradiation on adipogenic or osteogenic differentiation of TMSCs.

METHODS:

TMSCs, in the absence or presence of activators or inhibitors, were exposed to FIR irradiation followed by adipogenic or osteogenic differentiation, which was assessed using Oil red O or Alizarin red S staining, respectively. RT-PCR, qRT-PCR, and Western blotting were used to determine gene and protein expression of calcium channels and adipocyte-specific markers.

RESULTS:

Treatment with the calcium ionophore ionomycin simulated the inhibitory effect of FIR irradiation on adipogenic differentiation but had no effect on osteogenic differentiation, indicating the involvement of intracellular Ca2+ in adipogenic differentiation. Inhibition of pan-TRP channels using ruthenium red reversed the FIR irradiation-induced inhibition of adipogenic differentiation. Among the TRP channels tested, inhibition of the TRPV2 channel by tranilast or siRNA against TRPV2 attenuated the inhibitory effect of FIR irradiation on adipogenic differentiation, accompanied by a decrease in intracellular Ca2+ levels. By contrast, activation of the TRPV2 channel by probenecid simulated FIR irradiation-induced inhibition of adipogenic differentiation. Expectedly, the stimulatory effect of FIR irradiation on osteogenic differentiation was independent of the TRPV2 channel.

CONCLUSION:

Our data demonstrate that the TRPV2 channel is a sensor/receptor for the inhibited adipogenic differentiation of TMSCs associated with FIR irradiation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células Madre Mesenquimatosas Idioma: En Revista: Stem Cell Res Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células Madre Mesenquimatosas Idioma: En Revista: Stem Cell Res Año: 2021 Tipo del documento: Article