Your browser doesn't support javascript.
loading
Comparison of Conventional Gadoxetate Disodium-Enhanced MRI Features and Radiomics Signatures With Machine Learning for Diagnosing Microvascular Invasion.
Chen, Yidi; Xia, Yuwei; Tolat, Parag P; Long, Liling; Jiang, Zijian; Huang, Zhongkui; Tang, Qin.
Afiliación
  • Chen Y; Department of Radiology, Guangxi Medical University First Affiliated Hospital, No. 6 Shuangyong Rd, Nanning, Guangxi 530021, China.
  • Xia Y; Huiying Medical Technology Co., Ltd., HaiDian District, Beijing, China.
  • Tolat PP; Department of Radiology, Medical College of Wisconsin, Milwaukee, WI.
  • Long L; Department of Radiology, Guangxi Medical University First Affiliated Hospital, No. 6 Shuangyong Rd, Nanning, Guangxi 530021, China.
  • Jiang Z; Department of Radiology, Guangxi Medical University First Affiliated Hospital, No. 6 Shuangyong Rd, Nanning, Guangxi 530021, China.
  • Huang Z; Department of Radiology, Guangxi Medical University First Affiliated Hospital, No. 6 Shuangyong Rd, Nanning, Guangxi 530021, China.
  • Tang Q; Department of Radiology, Guangxi Medical University First Affiliated Hospital, No. 6 Shuangyong Rd, Nanning, Guangxi 530021, China.
AJR Am J Roentgenol ; 216(6): 1510-1520, 2021 06.
Article en En | MEDLINE | ID: mdl-33826360
OBJECTIVE. This study aimed to determine the best model for predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using conventional gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (gadoxetate disodium)-enhanced MRI features and radiomics signatures with machine learning. MATERIALS AND METHODS. This retrospective study included 269 patients with a postoperative pathologic diagnosis of HCC. Gadoxetate disodium-enhanced MRI features were assessed, including T1 relaxation time, tumor margin, tumor size, peritumoral enhancement, peritumoral hypointensity, and ADC. Radiomics models were constructed and validated by machine learning. The least absolute shrinkage and selection operator (LASSO) was used for feature selection, and radiomics-based LASSO models were constructed with six classifiers. Predictive capability was assessed using the ROC AUC. RESULTS. Histologic examination confirmed MVI in 111 (41.3%) of the 269 patients. ADC value, nonsmooth tumor margin, and 20-minute T1 relaxation time showed diagnostic accuracy with AUC values of 0.850, 0.847, and 0.846, respectively (p < .05 for all). A total of 1395 quantitative imaging features were extracted. In the hepatobiliary phase (HBP) model, the support vector machine (SVM), extreme gradient boosting (XGBoost), and logistic regression (LR) classifiers showed greater diagnostic efficiency for predicting MVI, with AUCs of 0.942, 0.938, and 0.936, respectively (p < .05 for all). CONCLUSION. ADC value, nonsmooth tumor margin, and 20-minute T1 relaxation time show high diagnostic accuracy for predicting MVI. Radiomics signatures with machine learning can further improve the ability to predict MVI and are best modeled during HBP. The SVM, XGBoost, and LR classifiers may serve as potential biomarkers to evaluate MVI.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Interpretación de Imagen Asistida por Computador / Aumento de la Imagen / Carcinoma Hepatocelular / Medios de Contraste / Gadolinio DTPA / Microvasos / Neoplasias Hepáticas Tipo de estudio: Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Humans / Male / Middle aged Idioma: En Revista: AJR Am J Roentgenol Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Interpretación de Imagen Asistida por Computador / Aumento de la Imagen / Carcinoma Hepatocelular / Medios de Contraste / Gadolinio DTPA / Microvasos / Neoplasias Hepáticas Tipo de estudio: Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Humans / Male / Middle aged Idioma: En Revista: AJR Am J Roentgenol Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos