Your browser doesn't support javascript.
loading
Antibodies to the SARS-CoV-2 receptor-binding domain that maximize breadth and resistance to viral escape.
Starr, Tyler N; Czudnochowski, Nadine; Zatta, Fabrizia; Park, Young-Jun; Liu, Zhuoming; Addetia, Amin; Pinto, Dora; Beltramello, Martina; Hernandez, Patrick; Greaney, Allison J; Marzi, Roberta; Glass, William G; Zhang, Ivy; Dingens, Adam S; Bowen, John E; Wojcechowskyj, Jason A; De Marco, Anna; Rosen, Laura E; Zhou, Jiayi; Montiel-Ruiz, Martin; Kaiser, Hannah; Tucker, Heather; Housley, Michael P; di Iulio, Julia; Lombardo, Gloria; Agostini, Maria; Sprugasci, Nicole; Culap, Katja; Jaconi, Stefano; Meury, Marcel; Dellota, Exequiel; Cameroni, Elisabetta; Croll, Tristan I; Nix, Jay C; Havenar-Daughton, Colin; Telenti, Amalio; Lempp, Florian A; Pizzuto, Matteo S; Chodera, John D; Hebner, Christy M; Whelan, Sean P J; Virgin, Herbert W; Veesler, David; Corti, Davide; Bloom, Jesse D; Snell, Gyorgy.
Afiliación
  • Starr TN; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
  • Czudnochowski N; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Zatta F; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
  • Park YJ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
  • Liu Z; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
  • Addetia A; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
  • Pinto D; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
  • Beltramello M; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
  • Hernandez P; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Greaney AJ; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
  • Marzi R; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
  • Glass WG; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
  • Zhang I; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Dingens AS; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Bowen JE; Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
  • Wojcechowskyj JA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
  • De Marco A; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
  • Rosen LE; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Zhou J; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
  • Montiel-Ruiz M; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Kaiser H; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Tucker H; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Housley MP; Vir Biotechnology, San Francisco, CA 94158, USA.
  • di Iulio J; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Lombardo G; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Agostini M; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Sprugasci N; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
  • Culap K; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Jaconi S; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
  • Meury M; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
  • Dellota E; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
  • Cameroni E; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Croll TI; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Nix JC; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
  • Havenar-Daughton C; Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Cambridge, CB2 0XY, UK.
  • Telenti A; Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • Lempp FA; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Pizzuto MS; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Chodera JD; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Hebner CM; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
  • Whelan SPJ; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Virgin HW; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Veesler D; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
  • Corti D; Vir Biotechnology, San Francisco, CA 94158, USA.
  • Bloom JD; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
  • Snell G; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
bioRxiv ; 2021 Apr 08.
Article en En | MEDLINE | ID: mdl-33851154
An ideal anti-SARS-CoV-2 antibody would resist viral escape 1-3 , have activity against diverse SARS-related coronaviruses 4-7 , and be highly protective through viral neutralization 8-11 and effector functions 12,13 . Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD), including S309 4 , the parental antibody of the late-stage clinical antibody VIR-7831. We observe a tradeoff between SARS-CoV-2 in vitro neutralization potency and breadth of binding across SARS-related coronaviruses. Nevertheless, we identify several neutralizing antibodies with exceptional breadth and resistance to escape, including a new antibody (S2H97) that binds with high affinity to all SARS-related coronavirus clades via a unique RBD epitope centered on residue E516. S2H97 and other escape-resistant antibodies have high binding affinity and target functionally constrained RBD residues. We find that antibodies targeting the ACE2 receptor binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency, but we identify one potent RBM antibody (S2E12) with breadth across sarbecoviruses closely related to SARS-CoV-2 and with a high barrier to viral escape. These data highlight functional diversity among antibodies targeting the RBD and identify epitopes and features to prioritize for antibody and vaccine development against the current and potential future pandemics.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos