Your browser doesn't support javascript.
loading
Change of coral carbon isotopic response to anthropogenic Suess effect since around 2000s.
Liu, Xi; Deng, Wenfeng; Cui, Hao; Chen, Xuefei; Cai, Guanqiang; Zeng, Ti; Wei, Gangjian.
Afiliación
  • Liu X; State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
  • Deng W; State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
  • Cui H; State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China;
  • Chen X; State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
  • Cai G; Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, Guangdong, 510760, China.
  • Zeng T; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
  • Wei G; State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
Mar Environ Res ; 168: 105328, 2021 Jun.
Article en En | MEDLINE | ID: mdl-33853013
The stable carbon isotope composition (δ13C) in coral skeletons can be used to reconstruct the evolution of the dissolved inorganic carbon (DIC) in surface seawater, and its long-term declining trend during the past 200 years (~1800-2000) reflects the effect of anthropogenic Suess effect on carbonate chemistry in surface oceans. The global atmospheric CO2 concentration still has been increasing since 2000, and the Suess effect is intensifying. Considering the coral's ability of resilience and acclimatization to external environmental stressors, the response of coral δ13C to Suess effect may change and needs to be re-evaluated. In this study, ten long coral δ13C time series synthesized from different oceans were used to re-evaluate the response of coral carbonate chemistry to Suess effect under the changing environments. These δ13C time series showed a long-term declining trend since 1960s, but the declining rates slowed in eight time series since around 2000s. Considering that the declining rates of the DIC-δ13C in surface seawater from the Hawaii Ocean Time-series Station and Bermuda Atlantic Time-series Station has not changed since 2000 compared with those during 1960-1999, the change in the coral δ13C trends at eight of ten locations may indicate that the response of coral δ13C to the anthropogenic Suess effect has changed since around 2000s. This change may have resulted from coral acclimatization to external environmental stressors. To adapt to acidifying oceans, coral may have the ability to regulate the source of DIC in extracellular calcifying fluid and/or the utilization way of DIC, therefore the response of coral δ13C to anthropogenic Suess effect will change accordingly.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Antozoos Límite: Animals Idioma: En Revista: Mar Environ Res Asunto de la revista: BIOLOGIA / SAUDE AMBIENTAL / TOXICOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Antozoos Límite: Animals Idioma: En Revista: Mar Environ Res Asunto de la revista: BIOLOGIA / SAUDE AMBIENTAL / TOXICOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido