Your browser doesn't support javascript.
loading
Quantum cryptography with highly entangled photons from semiconductor quantum dots.
Schimpf, Christian; Reindl, Marcus; Huber, Daniel; Lehner, Barbara; Covre Da Silva, Saimon F; Manna, Santanu; Vyvlecka, Michal; Walther, Philip; Rastelli, Armando.
Afiliación
  • Schimpf C; Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Austria. christian.schimpf@jku.at.
  • Reindl M; Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Austria.
  • Huber D; Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Austria.
  • Lehner B; Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Austria.
  • Covre Da Silva SF; Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Austria.
  • Manna S; Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Austria.
  • Vyvlecka M; Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Vienna, Austria.
  • Walther P; Doppler Laboratory for Photonic Quantum Computers, Faculty of Physics, University of Vienna, Vienna, Austria.
  • Rastelli A; Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Vienna, Austria.
Sci Adv ; 7(16)2021 Apr.
Article en En | MEDLINE | ID: mdl-33853777
ABSTRACT
Semiconductor quantum dots are capable of emitting polarization entangled photon pairs with ultralow multipair emission probability even at maximum brightness. Using a quantum dot source with a fidelity as high as 0.987(8), we implement here quantum key distribution with an average quantum bit error rate as low as 1.9% over a time span of 13 hours. For a proof of principle, the key generation is performed with the BBM92 protocol between two buildings, connected by a 350-m-long fiber, resulting in an average raw (secure) key rate of 135 bits/s (86 bits/s) for a pumping rate of 80 MHz, without resorting to time- or frequency-filtering techniques. Our work demonstrates the viability of quantum dots as light sources for entanglement-based quantum key distribution and quantum networks. By increasing the excitation rate and embedding the dots in state-of-the-art photonic structures, key generation rates in the gigabits per second range are in principle at reach.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2021 Tipo del documento: Article País de afiliación: Austria

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2021 Tipo del documento: Article País de afiliación: Austria