Your browser doesn't support javascript.
loading
miR-146a-5p targets Sirt1 to regulate bone mass.
Zheng, Mingxia; Tan, Junlong; Liu, Xiangning; Jin, Fujun; Lai, Renfa; Wang, Xiaogang.
Afiliación
  • Zheng M; Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China.
  • Tan J; Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China.
  • Liu X; Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China.
  • Jin F; Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China.
  • Lai R; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100000, China.
  • Wang X; Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of Stomatology, Jinan University, Guangdong 510632, China.
Bone Rep ; 14: 101013, 2021 Jun.
Article en En | MEDLINE | ID: mdl-33855130
ABSTRACT
MicroRNAs (miRNAs) have been proven to serve as key post-transcriptional regulators, affecting diverse biological processes including osteogenic differentiation and bone formation. Recently, it has been reported that miR-146a-5p affects the activity of both osteoblasts and osteoclasts. However, the target genes of miR-146a-5p in these procedures remain unknown. Here we identify miR-146a-5p as a critical suppressor of osteoblastogenesis and bone formation. We found that miR-146a-5p knockout mice exhibit elevated bone formation and enhanced bone mass in vivo. Consistently, we also found that miR-146a-5p inhibited the osteoblast differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. Importantly, we further demonstrated that miR-146a-5p directly targeted Sirt1 to inhibit osteoblast activity. Additionally, we showed that the expression of miR-146a-5p gradually increased in femurs with age not only in female mice but also in female patients, and miR-146a-5p deletion protected female mice from age-induced bone loss. These data suggested that miR-146a-5p has a crucial role in suppressing the bone formation and that inhibition of miR-146a-5p may be a strategy for ameliorating osteoporosis.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bone Rep Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bone Rep Año: 2021 Tipo del documento: Article País de afiliación: China