Your browser doesn't support javascript.
loading
Automated quantitative thin slice volumetric low dose CT analysis predicts disease severity in COVID-19 patients.
Stoleriu, Mircea Gabriel; Gerckens, Michael; Obereisenbuchner, Florian; Zaimova, Iva; Hetrodt, Justin; Mavi, Sarah-Christin; Schmidt, Felicitas; Schoenlebe, Anna Auguste; Heinig-Menhard, Katharina; Koch, Ina; Jörres, Rudolf A; Spiro, Judith; Nowak, Lorenz; Hatz, Rudolf; Behr, Jürgen; Gesierich, Wolfgang; Heiß-Neumann, Marion; Dinkel, Julien.
Afiliación
  • Stoleriu MG; Center for Thoracic Surgery Munich, Ludwig-Maximilians-University Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Marchioninistr, 15, 81377 Munich and Robert-Koch-Allee 2, 82131 Gauting, Germany; Comprehensive Pneumology Center, Helmholtz Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Ger
  • Gerckens M; Comprehensive Pneumology Center, Helmholtz Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Germany(1); Department of Internal Medicine V, Ludwig-Maximilians-University Munich (LMU), Marchioninistr, 15, 81377 Munich, Germany.
  • Obereisenbuchner F; Department of Pneumology, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2, 82131 Gauting, Germany.
  • Zaimova I; Department of Pneumology, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2, 82131 Gauting, Germany.
  • Hetrodt J; Department of Pneumology, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2, 82131 Gauting, Germany.
  • Mavi SC; Department of Pneumology, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2, 82131 Gauting, Germany.
  • Schmidt F; Department of Intensive Care Medicine, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2, 82131 Gauting, Germany.
  • Schoenlebe AA; Department of Intensive Care Medicine, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2, 82131 Gauting, Germany.
  • Heinig-Menhard K; Department of Intensive Care Medicine, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2, 82131 Gauting, Germany.
  • Koch I; Center for Thoracic Surgery Munich, Ludwig-Maximilians-University Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Marchioninistr, 15, 81377 Munich and Robert-Koch-Allee 2, 82131 Gauting, Germany; Comprehensive Pneumology Center, Helmholtz Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Ger
  • Jörres RA; Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University Munich (LMU), Ziemssenstraße 1, 80336 Munich, Germany.
  • Spiro J; Department of Radiology, Ludwig-Maximilians-University Munich (LMU), Marchioninistr, 15, 81377 Munich, Germany.
  • Nowak L; Department of Intensive Care Medicine, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2, 82131 Gauting, Germany.
  • Hatz R; Center for Thoracic Surgery Munich, Ludwig-Maximilians-University Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Marchioninistr, 15, 81377 Munich and Robert-Koch-Allee 2, 82131 Gauting, Germany; Comprehensive Pneumology Center, Helmholtz Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Ger
  • Behr J; Comprehensive Pneumology Center, Helmholtz Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Germany(1); Department of Pneumology, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2, 82131 Gauting, Germany; Department of Internal Medicine V, Ludwig-Maximilians-University Munich (LMU), Marchi
  • Gesierich W; Comprehensive Pneumology Center, Helmholtz Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Germany(1); Department of Pneumology, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2, 82131 Gauting, Germany.
  • Heiß-Neumann M; Department of Pneumology, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2, 82131 Gauting, Germany.
  • Dinkel J; Comprehensive Pneumology Center, Helmholtz Center Munich, Max-Lebsche-Platz 31, 81377 Munich, Germany(1); Department of Radiology, Ludwig-Maximilians-University Munich (LMU), Marchioninistr, 15, 81377 Munich, Germany; Department of Radiology, Asklepios Lung Clinic Munich-Gauting, Robert-Koch-Allee 2
Clin Imaging ; 79: 96-101, 2021 Nov.
Article en En | MEDLINE | ID: mdl-33910141
PURPOSE: This study aimed to identify predictive (bio-)markers for COVID-19 severity derived from automated quantitative thin slice low dose volumetric CT analysis, clinical chemistry and lung function testing. METHODS: Seventy-four COVID-19 patients admitted between March 16th and June 3rd 2020 to the Asklepios Lung Clinic Munich-Gauting, Germany, were included in the study. Patients were categorized in a non-severe group including patients hospitalized on general wards only and in a severe group including patients requiring intensive care treatment. Fully automated quantification of CT scans was performed via IMBIO CT Lung Texture analysis™ software. Predictive biomarkers were assessed with receiver-operator-curve and likelihood analysis. RESULTS: Fifty-five patients (44% female) presented with non-severe COVID-19 and 19 patients (32% female) with severe disease. Five fatalities were reported in the severe group. Accurate automated CT analysis was possible with 61 CTs (82%). Disease severity was linked to lower residual normal lung (72.5% vs 87%, p = 0.003), increased ground glass opacities (GGO) (8% vs 5%, p = 0.031) and increased reticular pattern (8% vs 2%, p = 0.025). Disease severity was associated with advanced age (76 vs 59 years, p = 0.001) and elevated serum C-reactive protein (CRP, 92.2 vs 36.3 mg/L, p < 0.001), lactate dehydrogenase (LDH, 485 vs 268 IU/L, p < 0.001) and oxygen supplementation (p < 0.001) upon admission. Predictive risk factors for the development of severe COVID-19 were oxygen supplementation, LDH >313 IU/L, CRP >71 mg/L, <70% normal lung texture, >12.5% GGO and >4.5% reticular pattern. CONCLUSION: Automated low dose CT analysis upon admission might be a useful tool to predict COVID-19 severity in patients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: COVID-19 Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Male / Middle aged Idioma: En Revista: Clin Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: COVID-19 Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Male / Middle aged Idioma: En Revista: Clin Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos