Your browser doesn't support javascript.
loading
Cost-effectiveness of postmastectomy hypofractionated radiation therapy vs conventional fractionated radiation therapy for high-risk breast cancer.
Yang, Jing; Qi, Shu-Nan; Fang, Hui; Song, Yong-Wen; Jin, Jing; Liu, Yue-Ping; Wang, Wei-Hu; Yang, Yong; Tang, Yu; Ren, Hua; Chen, Bo; Lu, Ning-Ning; Tang, Yuan; Li, Ning; Jing, Hao; Wang, Shu-Lian; Li, Ye-Xiong.
Afiliación
  • Yang J; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Qi SN; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Fang H; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Song YW; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Jin J; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Liu YP; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Wang WH; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China; Key Laboratory of Carcinogenesis a
  • Yang Y; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Tang Y; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Ren H; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Chen B; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Lu NN; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Tang Y; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Li N; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Jing H; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
  • Wang SL; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China. Electronic address: wangshulian@so
  • Li YX; State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China. Electronic address: yexiong@yahoo.
Breast ; 58: 72-79, 2021 Aug.
Article en En | MEDLINE | ID: mdl-33933925
ABSTRACT

BACKGROUND:

The phase 3 NCT00793962 trial demonstrated that postmastectomy hypofractionated radiation therapy (HFRT) was noninferior to conventional fractionated radiation therapy (CFRT) in patients with high-risk breast cancer. This study assessed the cost-effectiveness of postmastectomy HFRT vs CFRT based on the NCT00793962 trial.

METHODS:

A Markov model was adopted to synthesize the medical costs and health benefits of patients with high-risk breast cancer based on data from the NCT00793962 trial. Main outcomes were discounted lifetime costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICER). We employed a time-dependent horizon from Chinese, French and USA payer perspectives. Model robustness was evaluated with one-way and probabilistic sensitivity analyses.

RESULTS:

Patients receiving CFRT versus HFRT gained an incremental 0.0163 QALYs, 0.0118 QALYs and 0.0028 QALYs; meanwhile an incremental cost of $2351.92, $4978.34 and $8812.70 from Chinese, French and USA payer perspectives, respectively. Thus CFRT versus HFRT yielded an ICER of $144,281.47, $420,636.10 and $3,187,955.76 per QALY from Chinese, French and USA payer perspectives, respectively. HFRT could maintain a trend of >50% probabilities of cost-effectiveness below a willingness-to-pay (WTP) of $178,882.00 in China, while HFRT was dominant relative to CFRT, regardless of the WTP values in France and the USA. Sensitivity analyses indicated that the ICERs were most sensitive to the parameters of overall survival after radiotherapy.

CONCLUSIONS:

Postmastectomy HFRT could be used as a cost-effective substitute for CFRT in patients with high-risk breast cancer and should be considered in appropriately selected patients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Mama Tipo de estudio: Etiology_studies / Health_economic_evaluation / Risk_factors_studies Aspecto: Patient_preference Límite: Female / Humans Idioma: En Revista: Breast Asunto de la revista: ENDOCRINOLOGIA / NEOPLASIAS Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Mama Tipo de estudio: Etiology_studies / Health_economic_evaluation / Risk_factors_studies Aspecto: Patient_preference Límite: Female / Humans Idioma: En Revista: Breast Asunto de la revista: ENDOCRINOLOGIA / NEOPLASIAS Año: 2021 Tipo del documento: Article País de afiliación: China