Your browser doesn't support javascript.
loading
Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation.
Mamandipoor, Behrooz; Frutos-Vivar, Fernando; Peñuelas, Oscar; Rezar, Richard; Raymondos, Konstantinos; Muriel, Alfonso; Du, Bin; Thille, Arnaud W; Ríos, Fernando; González, Marco; Del-Sorbo, Lorenzo; Del Carmen Marín, Maria; Pinheiro, Bruno Valle; Soares, Marco Antonio; Nin, Nicolas; Maggiore, Salvatore M; Bersten, Andrew; Kelm, Malte; Bruno, Raphael Romano; Amin, Pravin; Cakar, Nahit; Suh, Gee Young; Abroug, Fekri; Jibaja, Manuel; Matamis, Dimitros; Zeggwagh, Amine Ali; Sutherasan, Yuda; Anzueto, Antonio; Wernly, Bernhard; Esteban, Andrés; Jung, Christian; Osmani, Venet.
Afiliación
  • Mamandipoor B; Fondazione Bruno Kessler Research Institute, Trento, Italy.
  • Frutos-Vivar F; Hospital Universitario de Getafe & Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
  • Peñuelas O; Hospital Universitario de Getafe & Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
  • Rezar R; Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020, Salzburg, Austria.
  • Raymondos K; Medizinische Hochschule Hannover, Hannover, Germany.
  • Muriel A; Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020, Salzburg, Austria.
  • Du B; Unidad de Bioestadística Clinica Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) & Centro de Investigación en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
  • Thille AW; Peking Union Medical College Hospital, Beijing, People's Republic of China.
  • Ríos F; University Hospital of Poitiers, Poitiers, France.
  • González M; Hospital Nacional Alejandro Posadas, Buenos Aires, Argentina.
  • Del-Sorbo L; Clínica Medellín & Universidad Pontificia Bolivariana, Medellín, Colombia.
  • Del Carmen Marín M; Interdepartmental Division of Critical Care Medicine, Toronto, ON, Canada.
  • Pinheiro BV; Hospital Regional 1° de Octubre, Instituto de Seguridad Y Servicios Sociales de Los Trabajadores del Estado (ISSSTE), México, DF, México.
  • Soares MA; Pulmonary Research Laboratory, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
  • Nin N; Hospital Universitario Sao Jose, Belo Horizonte, Brazil.
  • Maggiore SM; Hospital Español, Montevideo, Uruguay.
  • Bersten A; Università Degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.
  • Kelm M; Department of Critical Care Medicine, Flinders University, Adelaide, South Australia, Australia.
  • Bruno RR; Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University of Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
  • Amin P; Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University of Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
  • Cakar N; Bombay Hospital Institute of Medical Sciences, Mumbai, India.
  • Suh GY; Istanbul Faculty of Medicine, Istanbul, Turkey.
  • Abroug F; Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
  • Jibaja M; Hospital Fattouma Bourguina, Monastir, Tunisia.
  • Matamis D; Hospital de Especialidades Eugenio Espejo, Quito, Ecuador.
  • Zeggwagh AA; Papageorgiou Hospital, Thessaloniki, Greece.
  • Sutherasan Y; Centre Hospitalier Universitarie Ibn Sina - Mohammed V University, Rabat, Morocco.
  • Anzueto A; Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
  • Wernly B; South Texas Veterans Health Care System and University of Texas Health Science Center, San Antonio, TX, USA.
  • Esteban A; Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020, Salzburg, Austria.
  • Jung C; Hospital Universitario de Getafe & Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
  • Osmani V; Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University of Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany. christian.jung@med.uni-duesseldorf.de.
BMC Med Inform Decis Mak ; 21(1): 152, 2021 05 07.
Article en En | MEDLINE | ID: mdl-33962603
BACKGROUND: Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid-base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical ventilation parameters. METHODS: We performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre study, performed to investigate the effect of baseline characteristics and management changes over time on the all-cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation parameters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related to the function of other organs, improve the predictive performance of the model for both the overall cohort as well as the subgroup of patients with respiratory disorders. RESULTS: Predictive performance of RNN-based model was higher with Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 (± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders. CONCLUSION: The RNN-based model demonstrated better performance than RF and LR in patients in mechanical ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it impacts decision-making and patient outcomes. TRIAL REGISTRATION: NCT02731898 ( https://clinicaltrials.gov/ct2/show/NCT02731898 ), prospectively registered on April 8, 2016.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Respiración Artificial / Enfermedad Crítica Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Humans Idioma: En Revista: BMC Med Inform Decis Mak Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Respiración Artificial / Enfermedad Crítica Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Humans Idioma: En Revista: BMC Med Inform Decis Mak Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido