Automatic determination of the regularization weighting for wavelet-based compressed sensing MRI reconstructions.
Magn Reson Med
; 86(3): 1403-1419, 2021 09.
Article
en En
| MEDLINE
| ID: mdl-33963779
PURPOSE: To present a method that automatically, rapidly, and in a noniterative manner determines the regularization weighting for wavelet-based compressed sensing reconstructions. This method determines level-specific regularization weighting factors from the wavelet transform of the image obtained from zero-filling in k-space. METHODS: We compare reconstruction results obtained by our method, λauto , to the ones obtained by the L-curve, λLcurve , and the minimum NMSE, λNMSE . The comparisons are done using in vivo data; then, simulations are used to analyze the impact of undersampling and noise. We use NMSE, Pearson's correlation coefficient, high-frequency error norm, and structural similarity as reconstruction quality indices. RESULTS: Our method, λauto , provides improved reconstructed image quality to that obtained by λLcurve regardless of undersampling or SNR and comparable quality to λNMSE at high SNR. The method determines the regularization weighting prospectively with negligible computational time. CONCLUSION: Our main finding is an automatic, fast, noniterative, and robust procedure to determine the regularization weighting. The impact of this method is to enable prospective and tuning-free wavelet-based compressed sensing reconstructions.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Procesamiento de Imagen Asistido por Computador
Tipo de estudio:
Observational_studies
Idioma:
En
Revista:
Magn Reson Med
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
Año:
2021
Tipo del documento:
Article
País de afiliación:
Canadá
Pais de publicación:
Estados Unidos