Your browser doesn't support javascript.
loading
Novel AI driven approach to classify infant motor functions.
Reich, Simon; Zhang, Dajie; Kulvicius, Tomas; Bölte, Sven; Nielsen-Saines, Karin; Pokorny, Florian B; Peharz, Robert; Poustka, Luise; Wörgötter, Florentin; Einspieler, Christa; Marschik, Peter B.
Afiliación
  • Reich S; University Medical Center Göttingen, Child and Adolescent Psychiatry and Psychotherapy, 37075, Göttingen, Germany.
  • Zhang D; University Medical Center Göttingen, Child and Adolescent Psychiatry and Psychotherapy, 37075, Göttingen, Germany.
  • Kulvicius T; Division of Phoniatrics, Research Unit interdisciplinary Developmental Neuroscience, Medical University of Graz, 8036, Graz, Austria.
  • Bölte S; Leibniz ScienceCampus Primate Cognition, 37075, Göttingen, Germany.
  • Nielsen-Saines K; University Medical Center Göttingen, Child and Adolescent Psychiatry and Psychotherapy, 37075, Göttingen, Germany.
  • Pokorny FB; Georg-August University Göttingen, Third Institute of Physics-Biophysics, 37077, Göttingen, Germany.
  • Peharz R; Department of Women's and Children's Health, Karolinska Institutet, Center of Neurodevelopmental Disorders (KIND), 113 30, Stockholm, Sweden.
  • Poustka L; University of California, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
  • Wörgötter F; Division of Phoniatrics, Research Unit interdisciplinary Developmental Neuroscience, Medical University of Graz, 8036, Graz, Austria.
  • Einspieler C; University of Augsburg, EIHW-Chair of Embedded Intelligence for Health Care and Wellbeing, 86159, Augsburg, Germany.
  • Marschik PB; Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
Sci Rep ; 11(1): 9888, 2021 05 10.
Article en En | MEDLINE | ID: mdl-33972661
The past decade has evinced a boom of computer-based approaches to aid movement assessment in early infancy. Increasing interests have been dedicated to develop AI driven approaches to complement the classic Prechtl general movements assessment (GMA). This study proposes a novel machine learning algorithm to detect an age-specific movement pattern, the fidgety movements (FMs), in a prospectively collected sample of typically developing infants. Participants were recorded using a passive, single camera RGB video stream. The dataset of 2800 five-second snippets was annotated by two well-trained and experienced GMA assessors, with excellent inter- and intra-rater reliabilities. Using OpenPose, the infant full pose was recovered from the video stream in the form of a 25-points skeleton. This skeleton was used as input vector for a shallow multilayer neural network (SMNN). An ablation study was performed to justify the network's architecture and hyperparameters. We show for the first time that the SMNN is sufficient to discriminate fidgety from non-fidgety movements in a sample of age-specific typical movements with a classification accuracy of 88%. The computer-based solutions will complement original GMA to consistently perform accurate and efficient screening and diagnosis that may become universally accessible in daily clinical practice in the future.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interpretación de Imagen Asistida por Computador / Parálisis Cerebral / Aprendizaje Automático / Movimiento Tipo de estudio: Observational_studies / Prognostic_studies / Screening_studies Límite: Female / Humans / Infant / Male / Newborn Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interpretación de Imagen Asistida por Computador / Parálisis Cerebral / Aprendizaje Automático / Movimiento Tipo de estudio: Observational_studies / Prognostic_studies / Screening_studies Límite: Female / Humans / Infant / Male / Newborn Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido