Your browser doesn't support javascript.
loading
Estimation of health and demographic indicators with incomplete geographic information.
Wilson, Katie; Wakefield, Jon.
Afiliación
  • Wilson K; Department of Biostatistics, University of Washington, United States.
  • Wakefield J; Department of Biostatistics, University of Washington, United States; Department of Statistics, University of Washington, United States. Electronic address: jonno@u.washington.edu.
Spat Spatiotemporal Epidemiol ; 37: 100421, 2021 06.
Article en En | MEDLINE | ID: mdl-33980411
In low and middle income countries, household surveys are a valuable source of information for a range of health and demographic indicators. Increasingly, subnational estimates are required for targeting interventions and evaluating progress towards targets. In the majority of cases, stratified cluster sampling is used, with clusters corresponding to enumeration areas. The reported geographical information varies. A common procedure, to preserve confidentiality, is to give a jittered location with the true centroid of the cluster is displaced under a known algorithm. An alternative situation, which was used for older surveys in particular, is to report the geographical region within the cluster lies. In this paper, we describe a spatial hierarchical model in which we account for inaccuracies in the cluster locations. The computational algorithm we develop is fast and avoids the heavy computation of a pure MCMC approach. We illustrate by simulation the benefits of the model, over naive alternatives.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proyectos de Investigación Tipo de estudio: Prognostic_studies Aspecto: Patient_preference Límite: Humans Idioma: En Revista: Spat Spatiotemporal Epidemiol Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proyectos de Investigación Tipo de estudio: Prognostic_studies Aspecto: Patient_preference Límite: Humans Idioma: En Revista: Spat Spatiotemporal Epidemiol Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos