Your browser doesn't support javascript.
loading
Improved cluster ranking in protein-protein docking using a regression approach.
Sotudian, Shahabeddin; Desta, Israel T; Hashemi, Nasser; Zarbafian, Shahrooz; Kozakov, Dima; Vakili, Pirooz; Vajda, Sandor; Paschalidis, Ioannis Ch.
Afiliación
  • Sotudian S; Division of Systems Engineering, Boston University, Boston, USA.
  • Desta IT; Department of Biomedical Engineering, Boston University.
  • Hashemi N; Division of Systems Engineering, Boston University, Boston, USA.
  • Zarbafian S; Division of Systems Engineering, Boston University, Boston, USA.
  • Kozakov D; Laufer Center for Physical and Quantitative Biology, Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, USA.
  • Vakili P; Division of Systems Engineering, Boston University, Boston, USA.
  • Vajda S; Department of Biomedical Engineering, Boston University.
  • Paschalidis IC; Department of Chemistry, Boston University.
Comput Struct Biotechnol J ; 19: 2269-2278, 2021.
Article en En | MEDLINE | ID: mdl-33995918
We develop a Regression-based Ranking by Pairwise Cluster Comparisons (RRPCC) method to rank clusters of similar protein complex conformations generated by an underlying docking program. The method leverages robust regression to predict the relative quality difference between any pair or clusters and combines these pairwise assessments to form a ranked list of clusters, from higher to lower quality. We apply RRPCC to clusters produced by the automated docking server ClusPro and, depending on the training/validation strategy, we show improvement by 24-100% in ranking acceptable or better quality clusters first, and by 15-100% in ranking medium or better quality clusters first. We compare the RRPCC-ClusPro combination to a number of alternatives, and show that very different machine learning approaches to scoring docked structures yield similar success rates. Finally, we discuss the current limitations on sampling and scoring, looking ahead to further improvements. Interestingly, some features important for improved scoring are internal energy terms that occur only due to the local energy minimization applied in the refinement stage following rigid body docking.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Comput Struct Biotechnol J Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Comput Struct Biotechnol J Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos