Your browser doesn't support javascript.
loading
Hurricanes and hashtags: Characterizing online collective attention for natural disasters.
Arnold, Michael V; Dewhurst, David Rushing; Alshaabi, Thayer; Minot, Joshua R; Adams, Jane L; Danforth, Christopher M; Dodds, Peter Sheridan.
Afiliación
  • Arnold MV; MassMutual Center of Excellence in Complex Systems and Data Science, University of Vermont, Burlington, Vermont, United States of America.
  • Dewhurst DR; Computational Story Lab, Vermont Complex Systems Center, Burlington, Vermont, United States of America.
  • Alshaabi T; Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont, United States of America.
  • Minot JR; MassMutual Center of Excellence in Complex Systems and Data Science, University of Vermont, Burlington, Vermont, United States of America.
  • Adams JL; Computational Story Lab, Vermont Complex Systems Center, Burlington, Vermont, United States of America.
  • Danforth CM; Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont, United States of America.
  • Dodds PS; MassMutual Data Science, Boston, Massachusetts, United States of America.
PLoS One ; 16(5): e0251762, 2021.
Article en En | MEDLINE | ID: mdl-34038454
We study collective attention paid towards hurricanes through the lens of n-grams on Twitter, a social media platform with global reach. Using hurricane name mentions as a proxy for awareness, we find that the exogenous temporal dynamics are remarkably similar across storms, but that overall collective attention varies widely even among storms causing comparable deaths and damage. We construct 'hurricane attention maps' and observe that hurricanes causing deaths on (or economic damage to) the continental United States generate substantially more attention in English language tweets than those that do not. We find that a hurricane's Saffir-Simpson wind scale category assignment is strongly associated with the amount of attention it receives. Higher category storms receive higher proportional increases of attention per proportional increases in number of deaths or dollars of damage, than lower category storms. The most damaging and deadly storms of the 2010s, Hurricanes Harvey and Maria, generated the most attention and were remembered the longest, respectively. On average, a category 5 storm receives 4.6 times more attention than a category 1 storm causing the same number of deaths and economic damage.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Difusión de la Información / Tormentas Ciclónicas / Medios de Comunicación Sociales / Desastres Naturales Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Difusión de la Información / Tormentas Ciclónicas / Medios de Comunicación Sociales / Desastres Naturales Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos