Your browser doesn't support javascript.
loading
Challenges in Building of Deep Learning Models for Glioblastoma Segmentation: Evidence from Clinical Data.
Kurmukov, Anvar; Dalechina, Aleksandra; Saparov, Talgat; Belyaev, Mikhail; Zolotova, Svetlana; Golanov, Andrey; Nikolaeva, Anna.
Afiliación
  • Kurmukov A; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia.
  • Dalechina A; Higher School of Economics - National Research University, Moscow, Russia.
  • Saparov T; N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia.
  • Belyaev M; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia.
  • Zolotova S; Moscow Institute of Physics and Technology, Moscow, Russia.
  • Golanov A; Skolkovo Institute of Science and Technology, Moscow, Russia.
  • Nikolaeva A; N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia.
Stud Health Technol Inform ; 281: 298-302, 2021 May 27.
Article en En | MEDLINE | ID: mdl-34042753
In this article, we compare the performance of a state-of-the-art segmentation network (UNet) on two different glioblastoma (GB) segmentation datasets. Our experiments show that the same training procedure yields almost twice as bad results on the retrospective clinical data compared to the BraTS challenge data (in terms of Dice score). We discuss possible reasons for such an outcome, including inter-rater variability and high variability in magnetic resonance imaging (MRI) scanners and scanner settings. The high performance of segmentation models, demonstrated on preselected imaging data, does not bring the community closer to using these algorithms in clinical settings. We believe that a clinically applicable deep learning architecture requires a shift from unified datasets to heterogeneous data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glioblastoma / Aprendizaje Profundo Tipo de estudio: Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2021 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glioblastoma / Aprendizaje Profundo Tipo de estudio: Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2021 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Países Bajos