Challenges in Building of Deep Learning Models for Glioblastoma Segmentation: Evidence from Clinical Data.
Stud Health Technol Inform
; 281: 298-302, 2021 May 27.
Article
en En
| MEDLINE
| ID: mdl-34042753
In this article, we compare the performance of a state-of-the-art segmentation network (UNet) on two different glioblastoma (GB) segmentation datasets. Our experiments show that the same training procedure yields almost twice as bad results on the retrospective clinical data compared to the BraTS challenge data (in terms of Dice score). We discuss possible reasons for such an outcome, including inter-rater variability and high variability in magnetic resonance imaging (MRI) scanners and scanner settings. The high performance of segmentation models, demonstrated on preselected imaging data, does not bring the community closer to using these algorithms in clinical settings. We believe that a clinically applicable deep learning architecture requires a shift from unified datasets to heterogeneous data.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Glioblastoma
/
Aprendizaje Profundo
Tipo de estudio:
Observational_studies
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Stud Health Technol Inform
Asunto de la revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Año:
2021
Tipo del documento:
Article
País de afiliación:
Rusia
Pais de publicación:
Países Bajos