Pilot-scale constructed bypass channel for urban river restoration: the remedial efficiency and the variance in biodiversity.
Environ Sci Pollut Res Int
; 28(40): 56507-56521, 2021 Oct.
Article
en En
| MEDLINE
| ID: mdl-34060013
Like the blood vessels of the cities, urban rivers play a significant role on maintaining the cities' sustainable development. In addition to the prevention of pollutants discharge and improving the river water quality, the restoration of the urban rivers' ecosystem should be well concerned. To fill this gap, a pilot-scale study with constructed bypass channel (CBC) was conducted. The pollutants reduction by the aquatic plants of the CBC was evaluated, and the similarities/differences of the aquatic biodiversity between the CBC and the natural rivers were analyzed. The results indicated that the mean removal efficiency of TP, NH3-N, TN, and COD by the CBC was 66%, 60%, 52%, and 36%, respectively. Chlorophyta, Bacillariophyta, and Cyanophyta were the dominant phytoplankton phyla in the CBC which was in accordance with the studies conducted in the Dongjiang River and the Pearl River. During the study period of about 6 months, the population density and the biomass of the phytoplankton and the zooplankton increased over time. The quality of the influent dominated the aquatic organisms' diversity of the CBC. N-element dominated not only the phytoplankton variability, but also the bacterial species of the CBC. The timber pile and the submerged plant root soil were more suitable for the growth of the functional bacteria; thus, the construction of the river restoration infrastructures should avoid using large-scale cement materials. Overall, the study would improve the understanding of urban river restoration practice and provide guidance for future restoration practice especially from the aquatic ecological perspectives.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Ecosistema
/
Ríos
Tipo de estudio:
Guideline
País/Región como asunto:
Asia
Idioma:
En
Revista:
Environ Sci Pollut Res Int
Asunto de la revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Año:
2021
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania