Your browser doesn't support javascript.
loading
Enhancement of Speed and Accuracy Trade-Off for Sports Ball Detection in Videos-Finding Fast Moving, Small Objects in Real Time.
Hiemann, Alexander; Kautz, Thomas; Zottmann, Tino; Hlawitschka, Mario.
Afiliación
  • Hiemann A; Institute of Computer Science, Leipzig University, 04109 Leipzig, Germany.
  • Kautz T; Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany.
  • Zottmann T; Media Seasons, 04105 Leipzig, Germany.
  • Hlawitschka M; Faculty of Computer Science and Media, Leipzig University of Applied Sciences, 04277 Leipzig, Germany.
Sensors (Basel) ; 21(9)2021 May 06.
Article en En | MEDLINE | ID: mdl-34066380
The detection and localization of the ball in sport videos is crucial to better understand events and actions occurring in those sports. Despite recent advances in the field of object detection, the automatic detection of balls remains a challenging task due to the unsteady nature of balls in images. In this paper, we address the detection of small, fast-moving balls in sport video data and introduce a real-time ball detection approach based on the YOLOv3 object detection model. We apply specific adjustments to the network architecture and training process in order to enhance the detection accuracy and speed: We facilitate an efficient integration of motion information, avoiding a complex modification of the network architecture. Furthermore, we present a customized detection approach that is designed to primarily focus on the detection of small objects. We integrate domain-specific knowledge to adapt image pre-processing and a data augmentation strategy that takes advantage of the special features of balls in images in order to improve the generalization ability of the detection network. We demonstrate that the general trade-off between detection speed and accuracy of the YOLOv3 model can be enhanced in consideration of domain-specific prior knowledge.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Deportes / Procesamiento de Imagen Asistido por Computador Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Deportes / Procesamiento de Imagen Asistido por Computador Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza