Evolution of networks of protein domain organization.
Sci Rep
; 11(1): 12075, 2021 06 08.
Article
en En
| MEDLINE
| ID: mdl-34103558
Domains are the structural, functional and evolutionary units of proteins. They combine to form multidomain proteins. The evolutionary history of this molecular combinatorics has been studied with phylogenomic methods. Here, we construct networks of domain organization and explore their evolution. A time series of networks revealed two ancient waves of structural novelty arising from ancient 'p-loop' and 'winged helix' domains and a massive 'big bang' of domain organization. The evolutionary recruitment of domains was highly modular, hierarchical and ongoing. Domain rearrangements elicited non-random and scale-free network structure. Comparative analyses of preferential attachment, randomness and modularity showed yin-and-yang complementary transition and biphasic patterns along the structural chronology. Remarkably, the evolving networks highlighted a central evolutionary role of cofactor-supporting structures of non-ribosomal peptide synthesis pathways, likely crucial to the early development of the genetic code. Some highly modular domains featured dual response regulation in two-component signal transduction systems with DNA-binding activity linked to transcriptional regulation of responses to environmental change. Interestingly, hub domains across the evolving networks shared the historical role of DNA binding and editing, an ancient protein function in molecular evolution. Our investigation unfolds historical source-sink patterns of evolutionary recruitment that further our understanding of protein architectures and functions.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Evolución Molecular
/
Biología Computacional
/
Dominios Proteicos
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Revista:
Sci Rep
Año:
2021
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido