Your browser doesn't support javascript.
loading
Bayesian Learning of Adatom Interactions from Atomically Resolved Imaging Data.
Valleti, Sai Mani Prudhvi; Zou, Qiang; Xue, Rui; Vlcek, Lukas; Ziatdinov, Maxim; Vasudevan, Rama; Fu, Mingming; Yan, Jiaqiang; Mandrus, David; Gai, Zheng; Kalinin, Sergei V.
Afiliación
  • Valleti SMP; Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States.
  • Zou Q; The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Xue R; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States.
  • Vlcek L; Joint Institute for Computational Sciences, University of Tennessee, Knoxville, Oak Ridge, Tennessee 37831, United States.
  • Ziatdinov M; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831, United States.
  • Vasudevan R; The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Fu M; The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Yan J; The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Mandrus D; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831, United States.
  • Gai Z; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831, United States.
  • Kalinin SV; Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States.
ACS Nano ; 15(6): 9649-9657, 2021 Jun 22.
Article en En | MEDLINE | ID: mdl-34105943
Atomic structures and adatom geometries of surfaces encode information about the thermodynamics and kinetics of the processes that lead to their formation, and which can be captured by a generative physical model. Here we develop a workflow based on a machine-learning-based analysis of scanning tunneling microscopy images to reconstruct the atomic and adatom positions, and a Bayesian optimization procedure to minimize statistical distance between the chosen physical models and experimental observations. We optimize the parameters of a 2- and 3-parameter Ising model describing surface ordering and use the derived generative model to make predictions across the parameter space. For concentration dependence, we compare the predicted morphologies at different adatom concentrations with the dissimilar regions on the sample surfaces that serendipitously had different adatom concentrations. The proposed workflow can be used to reconstruct the thermodynamic models and associated uncertainties from the experimental observations of materials microstructures. The code used in the manuscript is available at https://github.com/saimani5/Adatom_interactions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Nano Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Nano Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos