Your browser doesn't support javascript.
loading
Supramolecular Click Product Interactions Induce Dynamic Stiffening of Extracellular Matrix-Mimetic Hydrogels.
Holt, Samantha E; Arroyo, Julio; Poux, Emily; Fricks, Austen; Agurcia, Isabelle; Heintschel, Marissa; Rakoski, Amanda; Alge, Daniel L.
Afiliación
  • Holt SE; Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States.
  • Arroyo J; Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States.
  • Poux E; Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States.
  • Fricks A; Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States.
  • Agurcia I; Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States.
  • Heintschel M; Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States.
  • Rakoski A; Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States.
  • Alge DL; Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States.
Biomacromolecules ; 22(7): 3040-3048, 2021 07 12.
Article en En | MEDLINE | ID: mdl-34129338
Progressive stiffening of the extracellular matrix (ECM) is observed in tissue development as well as in pathologies such as cancer, cardiovascular disease, and fibrotic disease. However, methods to recapitulate this phenomenon in vitro face critical limitations. Here, we present a poly(ethylene glycol)-based peptide-functionalized ECM-mimetic hydrogel platform capable of facile, user-controlled dynamic stiffening. This platform leverages supramolecular interactions between inverse-electron demand Diels-Alder tetrazine-norbornene click products (TNCP) to create pendant moieties that undergo non-covalent crosslinking, stiffening a pre-existing network formed via thiol-ene click chemistry over the course of 6 h. Pendant TNCP moieties have a concentration-dependent effect on gel stiffness while still being cytocompatible and permissive of cell-mediated gel degradation. The robustness of this approach as well as its simplicity and ease of translation give it broad potential utility.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polietilenglicoles / Hidrogeles Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polietilenglicoles / Hidrogeles Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos