Your browser doesn't support javascript.
loading
Phenotypic integration in the carnivoran backbone and the evolution of functional differentiation in metameric structures.
Martín-Serra, Alberto; Pérez-Ramos, Alejandro; Pastor, Francisco J; Velasco, David; Figueirido, Borja.
Afiliación
  • Martín-Serra A; Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain.
  • Pérez-Ramos A; Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain.
  • Pastor FJ; Departmento de Anatomía y Radiología, Museo de Anatomía Universidad de Valladolid Valladolid 47002 Spain.
  • Velasco D; Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain.
  • Figueirido B; Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain.
Evol Lett ; 5(3): 251-264, 2021 Jun.
Article en En | MEDLINE | ID: mdl-34136273
ABSTRACT
Explaining the origin and evolution of a vertebral column with anatomically distinct regions that characterizes the tetrapod body plan provides understanding of how metameric structures become repeated and how they acquire the ability to perform different functions. However, despite many decades of inquiry, the advantages and costs of vertebral column regionalization in anatomically distinct blocks, their functional specialization, and how they channel new evolutionary outcomes are poorly understood. Here, we investigate morphological integration (and how this integration is structured [modularity]) between all the presacral vertebrae of mammalian carnivorans to provide a better understanding of how regionalization in metameric structures evolves. Our results demonstrate that the subunits of the presacral column are highly integrated. However, underlying to this general pattern, three sets of vertebrae are recognized as presacral modules-the cervical module, the anterodorsal module, and the posterodorsal module-as well as one weakly integrated vertebra (diaphragmatic) that forms a transition between both dorsal modules. We hypothesize that the strength of integration organizing the axial system into modules may be associated with motion capability. The highly integrated anterior dorsal module coincides with a region with motion constraints to avoid compromising ventilation, whereas for the posterior dorsal region motion constraints avoid exceeding extension of the posterior back. On the other hand, the weakly integrated diaphragmatic vertebra belongs to the "Diaphragmatic joint complex"-a key region of the mammalian column of exceedingly permissive motion. Our results also demonstrate that these modules do not match with the traditional morphological regions, and we propose natural selection as the main factor shaping this pattern to stabilize some regions and to allow coordinate movements in others.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Evol Lett Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Evol Lett Año: 2021 Tipo del documento: Article
...