Your browser doesn't support javascript.
loading
Approaching the motional ground state of a 10-kg object.
Whittle, Chris; Hall, Evan D; Dwyer, Sheila; Mavalvala, Nergis; Sudhir, Vivishek; Abbott, R; Ananyeva, A; Austin, C; Barsotti, L; Betzwieser, J; Blair, C D; Brooks, A F; Brown, D D; Buikema, A; Cahillane, C; Driggers, J C; Effler, A; Fernandez-Galiana, A; Fritschel, P; Frolov, V V; Hardwick, T; Kasprzack, M; Kawabe, K; Kijbunchoo, N; Kissel, J S; Mansell, G L; Matichard, F; McCuller, L; McRae, T; Mullavey, A; Pele, A; Schofield, R M S; Sigg, D; Tse, M; Vajente, G; Vander-Hyde, D C; Yu, Hang; Yu, Haocun; Adams, C; Adhikari, R X; Appert, S; Arai, K; Areeda, J S; Asali, Y; Aston, S M; Baer, A M; Ball, M; Ballmer, S W; Banagiri, S; Barker, D.
Afiliación
  • Whittle C; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Hall ED; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Dwyer S; LIGO Hanford Observatory, Richland, WA 99352, USA.
  • Mavalvala N; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Sudhir V; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA. vivishek@mit.edu.
  • Abbott R; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Ananyeva A; LIGO, California Institute of Technology, Pasadena, CA 91125, USA.
  • Austin C; LIGO, California Institute of Technology, Pasadena, CA 91125, USA.
  • Barsotti L; Louisiana State University, Baton Rouge, LA 70803, USA.
  • Betzwieser J; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Blair CD; LIGO Livingston Observatory, Livingston, LA 70754, USA.
  • Brooks AF; LIGO Livingston Observatory, Livingston, LA 70754, USA.
  • Brown DD; OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia.
  • Buikema A; LIGO, California Institute of Technology, Pasadena, CA 91125, USA.
  • Cahillane C; OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia.
  • Driggers JC; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Effler A; LIGO, California Institute of Technology, Pasadena, CA 91125, USA.
  • Fernandez-Galiana A; LIGO Hanford Observatory, Richland, WA 99352, USA.
  • Fritschel P; LIGO Livingston Observatory, Livingston, LA 70754, USA.
  • Frolov VV; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Hardwick T; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Kasprzack M; LIGO Livingston Observatory, Livingston, LA 70754, USA.
  • Kawabe K; Louisiana State University, Baton Rouge, LA 70803, USA.
  • Kijbunchoo N; LIGO, California Institute of Technology, Pasadena, CA 91125, USA.
  • Kissel JS; LIGO Hanford Observatory, Richland, WA 99352, USA.
  • Mansell GL; OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
  • Matichard F; LIGO Hanford Observatory, Richland, WA 99352, USA.
  • McCuller L; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • McRae T; LIGO Hanford Observatory, Richland, WA 99352, USA.
  • Mullavey A; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Pele A; LIGO, California Institute of Technology, Pasadena, CA 91125, USA.
  • Schofield RMS; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Sigg D; OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
  • Tse M; LIGO Livingston Observatory, Livingston, LA 70754, USA.
  • Vajente G; LIGO Livingston Observatory, Livingston, LA 70754, USA.
  • Vander-Hyde DC; University of Oregon, Eugene, OR 97403, USA.
  • Yu H; LIGO Hanford Observatory, Richland, WA 99352, USA.
  • Yu H; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Adams C; LIGO, California Institute of Technology, Pasadena, CA 91125, USA.
  • Adhikari RX; Syracuse University, Syracuse, NY 13244, USA.
  • Appert S; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Arai K; Laser Interferometer Gravitational Wave Observatory (LIGO), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Areeda JS; LIGO Livingston Observatory, Livingston, LA 70754, USA.
  • Asali Y; LIGO, California Institute of Technology, Pasadena, CA 91125, USA.
  • Aston SM; LIGO, California Institute of Technology, Pasadena, CA 91125, USA.
  • Baer AM; LIGO, California Institute of Technology, Pasadena, CA 91125, USA.
  • Ball M; California State University Fullerton, Fullerton, CA 92831, USA.
  • Ballmer SW; Columbia University, New York, NY 10027, USA.
  • Banagiri S; LIGO Livingston Observatory, Livingston, LA 70754, USA.
  • Barker D; Christopher Newport University, Newport News, VA 23606, USA.
Science ; 372(6548): 1333-1336, 2021 06 18.
Article en En | MEDLINE | ID: mdl-34140386
ABSTRACT
The motion of a mechanical object, even a human-sized object, should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult because the thermal environment masks any quantum signature of the object's motion. The thermal environment also masks the effects of proposed modifications of quantum mechanics at large mass scales. We prepared the center-of-mass motion of a 10-kilogram mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in temperature, from room temperature to 77 nanokelvin, is commensurate with an 11 orders-of-magnitude suppression of quantum back-action by feedback and a 13 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state. Our approach will enable the possibility of probing gravity on massive quantum systems.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos