Your browser doesn't support javascript.
loading
How natural materials remove heavy metals from water: mechanistic insights from molecular dynamics simulations.
Pietrucci, Fabio; Boero, Mauro; Andreoni, Wanda.
Afiliación
  • Pietrucci F; Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) 4 Pl Jussieu F-75005 Paris France fabio.pietrucci@sorbonne-universite.fr.
  • Boero M; Université de Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS, UMR 7504 23 rue du Loess F-67034 Strasbourg France mauro.boero@ipmc.unistra.fr.
  • Andreoni W; Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut de Physique CH-1015 Lausanne Switzerland wanda.andreoni@epfl.ch.
Chem Sci ; 12(8): 2979-2985, 2021 Jan 11.
Article en En | MEDLINE | ID: mdl-34164066
Water pollution by heavy metals is of increasing concern due to its devastating effects on the environment and on human health. For the removal of heavy metals from water sources, natural materials, such as spent-coffee-grains or orange/banana/chestnut peels, appear to offer a potential cheap alternative to more sophisticated and costly technologies currently in use. However, in order to employ them effectively, it is necessary to gain a deeper understanding - at the molecular level - of the heavy metals-bioorganic-water system and exploit the power of computer simulations. As a step in this direction, we investigate via atomistic simulations the capture of lead ions from water by hemicellulose - the latter being representative of the polysaccharides that are common components of vegetables and fruit peels - as well as the reverse process. A series of independent molecular dynamics simulations, both classical and ab initio, reveals a coherent scenario which is consistent with what one would expect of an efficient capture, i.e. that it be fast and irreversible: (i) binding of the metal ions via adsorption is found to happen spontaneously on both carboxylate and hydroxide functional groups; (ii) in contrast, metal ion desorption, leading to solvation in water, involves sizable free-energy barriers.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2021 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2021 Tipo del documento: Article Pais de publicación: Reino Unido