Your browser doesn't support javascript.
loading
Nanoclay Reinforced Biomaterials for Mending Musculoskeletal Tissue Disorders.
Erezuma, Itsasne; Eufrasio-da-Silva, Tatiane; Golafshan, Nasim; Deo, Kaivalya; Mishra, Yogendra Kumar; Castilho, Miguel; Gaharwar, Akhilesh K; Leeuwenburgh, Sander; Dolatshahi-Pirouz, Alireza; Orive, Gorka.
Afiliación
  • Erezuma I; NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.
  • Eufrasio-da-Silva T; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, 01009, Spain.
  • Golafshan N; Department of Dentistry - Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, 6525, The Netherlands.
  • Deo K; Department of Orthopedics, University Medical Center Utrecht, Utrecht, GA, 3584, the Netherlands.
  • Mishra YK; Regenerative Medicine Utrecht, Utrecht, 3584, the Netherlands.
  • Castilho M; Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX-77843, USA.
  • Gaharwar AK; Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg, 6400, Denmark.
  • Leeuwenburgh S; Department of Orthopedics, University Medical Center Utrecht, Utrecht, GA, 3584, the Netherlands.
  • Dolatshahi-Pirouz A; Regenerative Medicine Utrecht, Utrecht, 3584, the Netherlands.
  • Orive G; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, MB, 5600, The Netherlands.
Adv Healthc Mater ; 10(16): e2100217, 2021 08.
Article en En | MEDLINE | ID: mdl-34185438
Nanoclay-reinforced biomaterials have sparked a new avenue in advanced healthcare materials that can potentially revolutionize treatment of musculoskeletal defects. Native tissues display many important chemical, mechanical, biological, and physical properties that engineered biomaterials need to mimic for optimal tissue integration and regeneration. However, it is time-consuming and difficult to endow such combinatorial properties on materials via feasible and nontoxic procedures. Fortunately, a number of nanomaterials such as graphene, carbon nanotubes, MXenes, and nanoclays already display a plethora of material properties that can be transferred to biomaterials through a simple incorporation procedure. In this direction, the members of the nanoclay family are easy to functionalize chemically, they can significantly reinforce the mechanical performance of biomaterials, and can provide bioactive properties by ionic dissolution products to upregulate cartilage and bone tissue formation. For this reason, nanoclays can become a key component for future orthopedic biomaterials. In this review, we specifically focus on the rapidly decreasing gap between clinic and laboratory by highlighting their application in a number of promising in vivo studies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Nanotubos de Carbono Idioma: En Revista: Adv Healthc Mater Año: 2021 Tipo del documento: Article País de afiliación: España Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Nanotubos de Carbono Idioma: En Revista: Adv Healthc Mater Año: 2021 Tipo del documento: Article País de afiliación: España Pais de publicación: Alemania