Your browser doesn't support javascript.
loading
Novel and atypical pathways for serotonin signaling.
Bockaert, Joël; Bécamel, Carine; Chaumont-Dubel, Séverine; Claeysen, Sylvie; Vandermoere, Franck; Marin, Philippe.
Afiliación
  • Bockaert J; The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.
  • Bécamel C; The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.
  • Chaumont-Dubel S; The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.
  • Claeysen S; The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.
  • Vandermoere F; The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.
  • Marin P; The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.
Fac Rev ; 10: 52, 2021.
Article en En | MEDLINE | ID: mdl-34195691
Serotonin (5-HT) appeared billions of years before 5-HT receptors and synapses. It is thus not surprising that 5-HT can control biological processes independently of its receptors. One example is serotonylation, which consists of covalent binding of 5-HT to the primary amine of glutamine. Over the past 20 years, serotonylation has been involved in the regulation of many signaling mechanisms. One of the most striking examples is the recent evidence that serotonylation of histone H3 constitutes an epigenetic mark. However, the pathophysiological role of histone H3 serotonylation remains to be discovered. All but one of the 5-HT receptors are G-protein-coupled receptors (GPCRs). The signaling pathways they control are finely tuned, and new, unexpected regulatory mechanisms are being uncovered continuously. Some 5-HT receptors (5-HT2C, 5-HT4, 5-HT6, and 5-HT7) signal through mechanisms that require neither G-proteins nor ß-arrestins, the two classical and almost universal GPCR signal transducers. 5-HT6 receptors are constitutively activated via their association with intracellular GPCR-interacting proteins (GIPs), including neurofibromin 1, cyclin-dependent kinase 5 (Cdk5), and G-protein-regulated inducer of neurite outgrowth 1 (GPRIN1). Interactions of 5-HT6 receptor with Cdk5 and GPRIN1 are not concomitant but occur sequentially and play a key role in dendritic tree morphogenesis. Furthermore, 5-HT6 receptor-mediated G-protein signaling in neurons is different in the cell body and primary cilium, where it is modulated by smoothened receptor activation. Finally, 5-HT2A receptors form heteromers with mGlu2 metabotropic glutamate receptors. This heteromerization results in a specific phosphorylation of mGlu2 receptor on a serine residue (Ser843) upon agonist stimulation of 5-HT2A or mGlu2 receptor. mGlu2 receptor phosphorylation on Ser843 is an essential step in engagement of Gi/o signaling not only upon mGlu2 receptor activation but also following 5-HT2A receptor activation, and thus represents a key molecular event underlying functional crosstalk between both receptors.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Fac Rev Año: 2021 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Fac Rev Año: 2021 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido