Your browser doesn't support javascript.
loading
Maximally selective single-cell target for circuit control in epilepsy models.
Hadjiabadi, Darian; Lovett-Barron, Matthew; Raikov, Ivan Georgiev; Sparks, Fraser T; Liao, Zhenrui; Baraban, Scott C; Leskovec, Jure; Losonczy, Attila; Deisseroth, Karl; Soltesz, Ivan.
Afiliación
  • Hadjiabadi D; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA. Electronic address: dhh@stanford.edu.
  • Lovett-Barron M; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
  • Raikov IG; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
  • Sparks FT; Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
  • Liao Z; Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
  • Baraban SC; Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA.
  • Leskovec J; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
  • Losonczy A; Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
  • Deisseroth K; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
  • Soltesz I; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
Neuron ; 109(16): 2556-2572.e6, 2021 08 18.
Article en En | MEDLINE | ID: mdl-34197732
Neurological and psychiatric disorders are associated with pathological neural dynamics. The fundamental connectivity patterns of cell-cell communication networks that enable pathological dynamics to emerge remain unknown. Here, we studied epileptic circuits using a newly developed computational pipeline that leveraged single-cell calcium imaging of larval zebrafish and chronically epileptic mice, biologically constrained effective connectivity modeling, and higher-order motif-focused network analysis. We uncovered a novel functional cell type that preferentially emerged in the preseizure state, the superhub, that was unusually richly connected to the rest of the network through feedforward motifs, critically enhancing downstream excitation. Perturbation simulations indicated that disconnecting superhubs was significantly more effective in stabilizing epileptic circuits than disconnecting hub cells that were defined traditionally by connection count. In the dentate gyrus of chronically epileptic mice, superhubs were predominately modeled adult-born granule cells. Collectively, these results predict a new maximally selective and minimally invasive cellular target for seizure control.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Convulsiones / Comunicación Celular / Epilepsia / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Neuron Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Convulsiones / Comunicación Celular / Epilepsia / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Neuron Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos