Substituent effects on through-space intervalence charge transfer in cofacial metal-organic frameworks.
Faraday Discuss
; 231(0): 152-167, 2021 Oct 15.
Article
en En
| MEDLINE
| ID: mdl-34251000
Electroactive metal-organic frameworks (MOFs) are an attractive class of materials owing to their multifunctional 3-dimensional structures, the properties of which can be modulated by changing the redox states of the components. In order to realise both fundamental and applied goals for these materials, a deeper understanding of the structure-function relationships that govern the charge transfer mechanisms is required. Chemical or electrochemical reduction of the framework [Zn(BPPFTzTz)(tdc)]·2DMF, hereafter denoted ZnFTzTz (where BPPFTzTz = 2,5-bis(3-fluoro-4-(pyridin-4-yl)phenyl)thiazolo[5,4-d]thiazole), generates mixed-valence states with optical signatures indicative of through-space intervalence charge transfer (IVCT) between the cofacially stacked ligands. Fluorination of the TzTz ligands influences the IVCT band parameters relative to the unsubstituted parent system, as revealed through Marcus-Hush theory analysis and single crystal UV-Vis spectroscopy. Using a combined experimental, theoretical and density functional theory (DFT) analysis, important insights into the effects of structural modifications, such as ligand substitution, on the degree of electronic coupling and rate of electron transfer have been obtained.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Faraday Discuss
Asunto de la revista:
QUIMICA
Año:
2021
Tipo del documento:
Article
Pais de publicación:
Reino Unido