Your browser doesn't support javascript.
loading
Supersonic Impact Response of Polymer Thin Films via Large-Scale Atomistic Simulations.
Bowman, Andrew L; Chan, Edwin P; Lawrimore, William B; Newman, John K.
Afiliación
  • Bowman AL; Engineer Research and Development Center, 3909 Halls Ferry Rd., Vicksburg, Mississippi 39180, United States of America.
  • Chan EP; Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States of America.
  • Lawrimore WB; Engineer Research and Development Center, 3909 Halls Ferry Rd., Vicksburg, Mississippi 39180, United States of America.
  • Newman JK; Engineer Research and Development Center, 3909 Halls Ferry Rd., Vicksburg, Mississippi 39180, United States of America.
Nano Lett ; 21(14): 5991-5997, 2021 07 28.
Article en En | MEDLINE | ID: mdl-34264685
ABSTRACT
Recent nanoscale ballistic tests have shown the applicability of nanomaterials for ballistic protection but have raised questions regarding the nanoscale structure-property relationships that contribute to the ballistic response. Herein, we report on multimillion-atom reactive molecular dynamics simulations of the supersonic impact, penetration, and failure of polyethylene (PE) and polystyrene (PS) ultrathin films. The simulated specific penetration energy (Ep*) versus impact velocity predicts to within 15% the experimentally determined Ep* for PS. For impact velocities less than 1 km s-1, a crazing/petalling failure mode is observed due to chain disentanglement, transitioning to fragmentation coupled with large amounts of adiabatic heating at velocities greater than 1 km s-1. Interestingly, the high entanglement density of PE provides enhanced penetration resistance at low velocities, whereas increased adiabatic heating in PS promotes greater penetration resistance at elevated velocities. By understanding nanoscale mechanisms of energy absorption, nanomaterials can be designed to provide superior penetration resistance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / Simulación de Dinámica Molecular Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / Simulación de Dinámica Molecular Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos