Your browser doesn't support javascript.
loading
Bifunctional Pd@RhPd Core-Shell Nanodendrites for Methanol Electrolysis.
Jiang, Yu-Chuan; Sun, Hui-Ying; Li, Ya-Nan; He, Jia-Wei; Xue, Qi; Tian, Xinlong; Li, Fu-Min; Yin, Shi-Bin; Li, Dong-Sheng; Chen, Yu.
Afiliación
  • Jiang YC; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic o
  • Sun HY; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic o
  • Li YN; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic o
  • He JW; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic o
  • Xue Q; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic o
  • Tian X; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China.
  • Li FM; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic o
  • Yin SB; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
  • Li DS; College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China.
  • Chen Y; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic o
ACS Appl Mater Interfaces ; 13(30): 35767-35776, 2021 Aug 04.
Article en En | MEDLINE | ID: mdl-34309354
Methanol electrolysis is a promising strategy to achieve energy-saving and efficient electrochemical hydrogen (H2) production. In this system, the advanced electrocatalysts with high catalytic performance for both the methanol oxidation reaction (MOR) and hydrogen evolution reaction (HER) are highly desirable. Inspired by the complementary catalytic properties of rhodium (Rh) and palladium (Pd) for MOR and HER, herein, several Pd core-RhPd alloy shell nanodendrites (Pd@RhPd NDs) are synthesized through the galvanic replacement reaction between Pd nanodendrites (Pd NDs) and rhodium trichloride. For MOR, Pd@RhPd NDs exhibit Rh content-determined catalytic activity, in which Pd@Rh0.07Pd NDs have an optimal combination of oxidation potential and oxidation current due to the synergistic catalytic process of Pd/Rh double active sites. For HER, the introduction of Rh greatly improves the catalytic activity of Pd@RhPd NDs compared to that of Pd NDs, suggesting that Rh is the main activity site for HER. Unlike MOR, however, the HER activity of Pd@RhPd NDs is not sensitive to the Rh content. Using Pd@Rh0.07Pd NDs as robust bifunctional electrocatalysts, the as-constructed two-electrode methanol electrolysis cell shows a much lower voltage (0.813 V) than that of water electrolysis (1.672 V) to achieve electrochemical H2 production at 10 mA cm-2, demonstrating the application prospect of methanol electrolysis for H2 production.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos