Your browser doesn't support javascript.
loading
Measurement error in meta-analysis (MEMA)-A Bayesian framework for continuous outcome data subject to non-differential measurement error.
Campbell, Harlan; de Jong, Valentijn M T; Maxwell, Lauren; Jaenisch, Thomas; Debray, Thomas P A; Gustafson, Paul.
Afiliación
  • Campbell H; Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada.
  • de Jong VMT; Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands.
  • Maxwell L; Heidelberg Institute for Global Health, Heidelberg University Hospital, Heidelberg, Germany.
  • Jaenisch T; Heidelberg Institute for Global Health, Heidelberg University Hospital, Heidelberg, Germany.
  • Debray TPA; Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA.
  • Gustafson P; Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands.
Res Synth Methods ; 12(6): 796-815, 2021 Nov.
Article en En | MEDLINE | ID: mdl-34312994
Ideally, a meta-analysis will summarize data from several unbiased studies. Here we look into the less than ideal situation in which contributing studies may be compromised by non-differential measurement error in the exposure variable. Specifically, we consider a meta-analysis for the association between a continuous outcome variable and one or more continuous exposure variables, where the associations may be quantified as regression coefficients of a linear regression model. A flexible Bayesian framework is developed which allows one to obtain appropriate point and interval estimates with varying degrees of prior knowledge about the magnitude of the measurement error. We also demonstrate how, if individual-participant data (IPD) are available, the Bayesian meta-analysis model can adjust for multiple participant-level covariates, these being measured with or without measurement error.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Teorema de Bayes Tipo de estudio: Prognostic_studies / Systematic_reviews Límite: Humans Idioma: En Revista: Res Synth Methods Año: 2021 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Teorema de Bayes Tipo de estudio: Prognostic_studies / Systematic_reviews Límite: Humans Idioma: En Revista: Res Synth Methods Año: 2021 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Reino Unido