Your browser doesn't support javascript.
loading
Acylation of the Incretin Peptide Exendin-4 Directly Impacts Glucagon-Like Peptide-1 Receptor Signaling and Trafficking.
Lucey, Maria; Ashik, Tanyel; Marzook, Amaara; Wang, Yifan; Goulding, Joëlle; Oishi, Atsuro; Broichhagen, Johannes; Hodson, David J; Minnion, James; Elani, Yuval; Jockers, Ralf; Briddon, Stephen J; Bloom, Stephen R; Tomas, Alejandra; Jones, Ben.
Afiliación
  • Lucey M; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Ashik T; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Marzook A; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Wang Y; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Goulding J; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Oishi A; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Broichhagen J; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Hodson DJ; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Minnion J; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Elani Y; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Jockers R; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Briddon SJ; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Bloom SR; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Tomas A; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
  • Jones B; Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Ki
Mol Pharmacol ; 100(4): 319-334, 2021 10.
Article en En | MEDLINE | ID: mdl-34315812
ABSTRACT
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor and mainstay therapeutic target for the treatment of type 2 diabetes and obesity. Recent reports have highlighted how biased agonism at the GLP-1R affects sustained glucose-stimulated insulin secretion through avoidance of desensitization and downregulation. A number of GLP-1R agonists (GLP-1RAs) feature a fatty acid moiety to prolong their pharmacokinetics via increased albumin binding, but the potential for these chemical changes to influence GLP-1R function has rarely been investigated beyond potency assessments for cAMP. Here, we directly compare the prototypical GLP-1RA exendin-4 with its C-terminally acylated analog, exendin-4-C16. We examine relative propensities of each ligand to recruit and activate G proteins and ß-arrestins, endocytic and postendocytic trafficking profiles, and interactions with model and cellular membranes in HEK293 and HEK293T cells. Both ligands had similar cAMP potency, but exendin-4-C16 showed ∼2.5-fold bias toward G protein recruitment and a ∼60% reduction in ß-arrestin-2 recruitment efficacy compared with exendin-4, as well as reduced GLP-1R endocytosis and preferential targeting toward recycling pathways. These effects were associated with reduced movement of the GLP-1R extracellular domain measured using a conformational biosensor approach and a ∼70% increase in insulin secretion in INS-1 832/3 cells. Interactions with plasma membrane lipids were enhanced by the acyl chain. Exendin-4-C16 showed extensive albumin binding and was highly effective for lowering of blood glucose in mice over at least 72 hours. Our study highlights the importance of a broad approach to the evaluation of GLP-1RA pharmacology. SIGNIFICANCE STATEMENT Acylation is a common strategy to enhance the pharmacokinetics of peptide-based drugs. This work shows how acylation can also affect various other pharmacological parameters, including biased agonism, receptor trafficking, and interactions with the plasma membrane, which may be therapeutically important.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Incretinas / Receptor del Péptido 1 Similar al Glucagón / Exenatida Límite: Animals / Humans / Male Idioma: En Revista: Mol Pharmacol Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Incretinas / Receptor del Péptido 1 Similar al Glucagón / Exenatida Límite: Animals / Humans / Male Idioma: En Revista: Mol Pharmacol Año: 2021 Tipo del documento: Article