GESLM algorithm for detecting causal SNPs in GWAS with multiple phenotypes.
Brief Bioinform
; 22(6)2021 11 05.
Article
en En
| MEDLINE
| ID: mdl-34323927
With the development of genome-wide association studies, how to gain information from a large scale of data has become an issue of common concern, since traditional methods are not fully developed to solve problems such as identifying loci-to-loci interactions (also known as epistasis). Previous epistatic studies mainly focused on local information with a single outcome (phenotype), while in this paper, we developed a two-stage global search algorithm, Greedy Equivalence Search with Local Modification (GESLM), to implement a global search of directed acyclic graph in order to identify genome-wide epistatic interactions with multiple outcome variables (phenotypes) in a case-control design. GESLM integrates the advantages of score-based methods and constraint-based methods to learn the phenotype-related Bayesian network and is powerful and robust to find the interaction structures that display both genetic associations with phenotypes and gene interactions. We compared GESLM with some common phenotype-related loci detecting methods in simulation studies. The results showed that our method improved the accuracy and efficiency compared with others, especially in an unbalanced case-control study. Besides, its application on the UK Biobank dataset suggested that our algorithm has great performance when handling genome-wide association data with more than one phenotype.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Fenotipo
/
Algoritmos
/
Polimorfismo de Nucleótido Simple
/
Estudio de Asociación del Genoma Completo
Tipo de estudio:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Brief Bioinform
Asunto de la revista:
BIOLOGIA
/
INFORMATICA MEDICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido