Your browser doesn't support javascript.
loading
GESLM algorithm for detecting causal SNPs in GWAS with multiple phenotypes.
Lyu, Ruiqi; Sun, Jianle; Xu, Dong; Jiang, Qianxue; Wei, Chaochun; Zhang, Yue.
Afiliación
  • Lyu R; Shanghai Jiao Tong University, Department of Bioinformatics and Biostatistics, Shanghai, 200240, China.
  • Sun J; Shanghai Jiao Tong University, Department of Bioinformatics and Biostatistics, Shanghai, 200240, China.
  • Xu D; Shanghai Jiao Tong University, Department of Bioinformatics and Biostatistics, Shanghai, 200240, China.
  • Jiang Q; Shanghai Jiao Tong University, Department of Bioinformatics and Biostatistics, Shanghai, 200240, China.
  • Wei C; Shanghai Jiao Tong University, Department of Bioinformatics and Biostatistics, Shanghai, 200240, China.
  • Zhang Y; Shanghai Jiao Tong University, Department of Bioinformatics and Biostatistics, Shanghai, 200240, China.
Brief Bioinform ; 22(6)2021 11 05.
Article en En | MEDLINE | ID: mdl-34323927
With the development of genome-wide association studies, how to gain information from a large scale of data has become an issue of common concern, since traditional methods are not fully developed to solve problems such as identifying loci-to-loci interactions (also known as epistasis). Previous epistatic studies mainly focused on local information with a single outcome (phenotype), while in this paper, we developed a two-stage global search algorithm, Greedy Equivalence Search with Local Modification (GESLM), to implement a global search of directed acyclic graph in order to identify genome-wide epistatic interactions with multiple outcome variables (phenotypes) in a case-control design. GESLM integrates the advantages of score-based methods and constraint-based methods to learn the phenotype-related Bayesian network and is powerful and robust to find the interaction structures that display both genetic associations with phenotypes and gene interactions. We compared GESLM with some common phenotype-related loci detecting methods in simulation studies. The results showed that our method improved the accuracy and efficiency compared with others, especially in an unbalanced case-control study. Besides, its application on the UK Biobank dataset suggested that our algorithm has great performance when handling genome-wide association data with more than one phenotype.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenotipo / Algoritmos / Polimorfismo de Nucleótido Simple / Estudio de Asociación del Genoma Completo Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenotipo / Algoritmos / Polimorfismo de Nucleótido Simple / Estudio de Asociación del Genoma Completo Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido