Your browser doesn't support javascript.
loading
Fully Automatic Adaptive Meshing Based Segmentation of the Ventricular System for Augmented Reality Visualization and Navigation.
van Doormaal, Jesse A M; Fick, Tim; Ali, Meedie; Köllen, Mare; van der Kuijp, Vince; van Doormaal, Tristan P C.
Afiliación
  • van Doormaal JAM; Department of Neurosurgery, University Medical Center Utrecht, Utrecht, Province of Utrecht, the Netherlands. Electronic address: Jessevandoormaal@gmail.com.
  • Fick T; Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Province of Utrecht, the Netherlands.
  • Ali M; Department of Neurosurgery, Leiden University Medical Center, Leiden, South-Holland, the Netherlands.
  • Köllen M; Department of Neurosurgery, University Medical Center Utrecht, Utrecht, Province of Utrecht, the Netherlands.
  • van der Kuijp V; Department of Neurosurgery, University Medical Center Utrecht, Utrecht, Province of Utrecht, the Netherlands.
  • van Doormaal TPC; Department of Neurosurgery, University Medical Center Utrecht, Utrecht, Province of Utrecht, the Netherlands; Department of Neurosurgery, University Hospital of Zürich, Zürich, Canton of Zürich, Switzerland.
World Neurosurg ; 156: e9-e24, 2021 12.
Article en En | MEDLINE | ID: mdl-34333157
ABSTRACT

OBJECTIVE:

Effective image segmentation of cerebral structures is fundamental to 3-dimensional techniques such as augmented reality. To be clinically viable, segmentation algorithms should be fully automatic and easily integrated in existing digital infrastructure. We created a fully automatic adaptive-meshing-based segmentation system for T1-weighted magnetic resonance images (MRI) to automatically segment the complete ventricular system, running in a cloud-based environment that can be accessed on an augmented reality device. This study aims to assess the accuracy and segmentation time of the system by comparing it to a manually segmented ground truth dataset.

METHODS:

A ground truth (GT) dataset of 46 contrast-enhanced and non-contrast-enhanced T1-weighted MRI scans was manually segmented. These scans also were uploaded to our system to create a machine-segmented (MS) dataset. The GT data were compared with the MS data using the Sørensen-Dice similarity coefficient and 95% Hausdorff distance to determine segmentation accuracy. Furthermore, segmentation times for all GT and MS segmentations were measured.

RESULTS:

Automatic segmentation was successful for 45 (98%) of 46 cases. Mean Sørensen-Dice similarity coefficient score was 0.83 (standard deviation [SD] = 0.08) and mean 95% Hausdorff distance was 19.06 mm (SD = 11.20). Segmentation time was significantly longer for the GT group (mean = 14405 seconds, SD = 7089) when compared with the MS group (mean = 1275 seconds, SD = 714) with a mean difference of 13,130 seconds (95% confidence interval 10,130-16,130).

CONCLUSIONS:

The described adaptive meshing-based segmentation algorithm provides accurate and time-efficient automatic segmentation of the ventricular system from T1 MRI scans and direct visualization of the rendered surface models in augmented reality.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Ventrículos Cerebrales / Imagenología Tridimensional / Neuronavegación / Realidad Aumentada Tipo de estudio: Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: World Neurosurg Asunto de la revista: NEUROCIRURGIA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Ventrículos Cerebrales / Imagenología Tridimensional / Neuronavegación / Realidad Aumentada Tipo de estudio: Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: World Neurosurg Asunto de la revista: NEUROCIRURGIA Año: 2021 Tipo del documento: Article