Your browser doesn't support javascript.
loading
Optimization of Monomer Molecular Structure for Polymer Electrodes Fabricated through in-situ Electro-Polymerization Strategy.
Wang, Zhuanping; Yang, Jixing; Chen, Zifeng; Ye, Long; Xu, Yunhua.
Afiliación
  • Wang Z; School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China.
  • Yang J; School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China.
  • Chen Z; School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China.
  • Ye L; School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China.
  • Xu Y; School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China.
ChemSusChem ; 14(20): 4573-4582, 2021 Oct 20.
Article en En | MEDLINE | ID: mdl-34378343
ABSTRACT
In-situ electro-polymerization of redox-active monomers has been proved to be a novel and facile strategy to prepare polymer electrodes with superior electrochemical performance. The monomer molecular structure would have a profound impact on electro-polymerization behavior and thus electrochemical performance. However, this impact is poorly understood and has barely been investigated yet. Herein, three carbazole-based monomers, 9-phenylcarbazole (CB), 1,4-bis(carbazol-9-yl)benzene (DCB), and 2,6-bis(carbazol-9-yl)naphthalene (DCN), were applied to study the above issue systematically and achieve excellent long cycle performance. The monomers were rationally designed with different polymerizable sites and solubilities. It was found that a monomer with increased polymerizable sites and decreased solubility brought about enhanced electrochemical performance. This is because poor solubility could enhance utilization of the monomer for polymerization and more polymerizable sites could lead to a stable crosslinked polymer network after electro-polymerization. DCN with four polymerizable sites and the poorest solubility displayed the best electrochemical performance, which showed stable cycling up to 5000 cycles with high capacity retention of 76.2 % (among the best cycle in the literature). Our work for the first time reveals the relationship between monomer structure and in-situ electro-polymerization behavior. This work could shed light on the structure design/optimization of monomers for high-performance polymer electrodes prepared through in-situ electro-polymerization.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ChemSusChem Asunto de la revista: QUIMICA / TOXICOLOGIA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ChemSusChem Asunto de la revista: QUIMICA / TOXICOLOGIA Año: 2021 Tipo del documento: Article
...