Your browser doesn't support javascript.
loading
Improved modeling of the solid-to-plasma transition of polystyrene ablator for laser direct-drive inertial confinement fusion hydrocodes.
Pineau, A; Chimier, B; Hu, S X; Duchateau, G.
Afiliación
  • Pineau A; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, 351 Cours de la Libération, 33405 Talence Cedex, France.
  • Chimier B; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, 351 Cours de la Libération, 33405 Talence Cedex, France.
  • Hu SX; Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623, USA.
  • Duchateau G; Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, 351 Cours de la Libération, 33405 Talence Cedex, France.
Phys Rev E ; 104(1-2): 015210, 2021 Jul.
Article en En | MEDLINE | ID: mdl-34412245
The target performance of laser direct-drive inertial confinement fusion (ICF) can be limited by the development of hydrodynamic instabilities resulting from the nonhomegeneous laser absorption at the target surface, i.e., the laser imprint on the ablator. To understand and describe the formation of these instabilities, the early ablator evolution during the laser irradiation should be considered. In this work, an improved modeling of the solid-to-plasma transition of a polystyrene ablator for laser direct-drive ICF is proposed. This model is devoted to be implemented in hydrocodes dedicated to ICF which generally assume an initial plasma state. The present approach consists of the two-temperature model coupled to the electron, ion and neutral dynamics including the chemical fragmentation of polystyrene. The solid-to-plasma transition is shown to significantly influence the temporal evolution of both free electron density and temperatures, which can lead to different shock formation and propagation compared with an initial plasma state. The influence of the solid-to-plasma transition on the shock dynamics is evidenced by considering the scaling law of the pressure with respect to the laser intensity. The ablator transition is shown to modify the scaling law exponent compared with an initial plasma state.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2021 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2021 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos