Your browser doesn't support javascript.
loading
Guiding the Catalytic Properties of Copper for Electrochemical CO2 Reduction by Metal Atom Decoration.
Nishimura, Yusaku F; Peng, Hong-Jie; Nitopi, Stephanie; Bajdich, Michal; Wang, Lei; Morales-Guio, Carlos G; Abild-Pedersen, Frank; Jaramillo, Thomas F; Hahn, Christopher.
Afiliación
  • Nishimura YF; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
  • Peng HJ; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Nitopi S; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
  • Bajdich M; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Wang L; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
  • Morales-Guio CG; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Abild-Pedersen F; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
  • Jaramillo TF; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Hahn C; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
ACS Appl Mater Interfaces ; 13(44): 52044-52054, 2021 Nov 10.
Article en En | MEDLINE | ID: mdl-34415714
ABSTRACT
Tuning bimetallic effects is a promising strategy to guide catalytic properties. However, the nature of these effects can be difficult to assess and compare due to the convolution with other factors such as the catalyst surface structure and morphology and differences in testing environments. Here, we investigate the impact of atomic-scale bimetallic effects on the electrochemical CO2 reduction performance of Cu-based catalysts by leveraging a systematic approach that unifies protocols for materials synthesis and testing and enables accurate comparisons of intrinsic catalytic activity and selectivity. We used the same physical vapor deposition method to epitaxially grow Cu(100) films decorated with a small amount of noble or base metal atoms and a combination of experimental characterization and first-principles calculations to evaluate their physicochemical and catalytic properties. The results indicate that the metal atoms segregate to under-coordinated Cu sites during physical vapor deposition, suppressing CO reduction to oxygenates and hydrocarbons and promoting competing pathways to CO, formate, and hydrogen. Leveraging these insights, we rationalize bimetallic design principles to improve catalytic selectivity for CO2 reduction to CO, formate, oxygenates, or hydrocarbons. Our study provides one of the most extensive studies on Cu bimetallics for CO2 reduction, establishing a systematic approach that is broadly applicable to research in catalyst discovery.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA