Your browser doesn't support javascript.
loading
Cellular Prion Protein Mediates α-Synuclein Uptake, Localization, and Toxicity In Vitro and In Vivo.
Thom, Tobias; Schmitz, Matthias; Fischer, Anna-Lisa; Correia, Angela; Correia, Susana; Llorens, Franc; Pique, Anna-Villar; Möbius, Wiebke; Domingues, Renato; Zafar, Saima; Stoops, Erik; Silva, Christopher J; Fischer, Andre; Outeiro, Tiago F; Zerr, Inga.
Afiliación
  • Thom T; Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.
  • Schmitz M; Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.
  • Fischer AL; Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.
  • Correia A; Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.
  • Correia S; Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.
  • Llorens F; Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.
  • Pique AV; Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain.
  • Möbius W; Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain.
  • Domingues R; Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.
  • Zafar S; Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain.
  • Stoops E; Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain.
  • Silva CJ; Department for Neurogenetics, EM Core Unit Max Planck Institute for Experimental Medicine, Göttingen, Germany.
  • Fischer A; Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
  • Outeiro TF; Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.
  • Zerr I; Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
Mov Disord ; 37(1): 39-51, 2022 01.
Article en En | MEDLINE | ID: mdl-34448510
ABSTRACT

BACKGROUND:

The cellular prion protein (PrPC ) is a membrane-bound, multifunctional protein mainly expressed in neuronal tissues. Recent studies indicate that the native trafficking of PrPC can be misused to internalize misfolded amyloid beta and α-synuclein (aSyn) oligomers.

OBJECTIVES:

We define PrPC 's role in internalizing misfolded aSyn in α-synucleinopathies and identify further involved proteins.

METHODS:

We performed comprehensive behavioral studies on four transgenic mouse models (ThySyn and ThySynPrP00, TgM83 and TgMPrP00) at different ages. We developed PrPC -(over)-expressing cell models (cell line and primary cortical neurons), used confocal laser microscopy to perform colocalization studies, applied mass spectrometry to identify interactomes, and determined disassociation constants using surface plasmon resonance (SPR) spectroscopy.

RESULTS:

Behavioral deficits (memory, anxiety, locomotion, etc.), reduced lifespans, and higher oligomeric aSyn levels were observed in PrPC -expressing mice (ThySyn and TgM83), but not in homologous Prnp ablated mice (ThySynPrP00 and TgMPrP00). PrPC colocalized with and facilitated aSyn (oligomeric and monomeric) internalization in our cell-based models. Glimepiride treatment of PrPC -overexpressing cells reduced aSyn internalization in a dose-dependent manner. SPR analysis showed that the binding affinity of PrPC to monomeric aSyn was lower than to oligomeric aSyn. Mass spectrometry-based proteomic studies identified clathrin in the immunoprecipitates of PrPC and aSyn. SPR was used to show that clathrin binds to recombinant PrP, but not aSyn. Experimental disruption of clathrin-coated vesicles significantly decreased aSyn internalization.

CONCLUSION:

PrPC 's native trafficking can be misused to internalize misfolded aSyn through a clathrin-based mechanism, which may facilitate the spreading of pathological aSyn. Disruption of aSyn-PrPC binding is, therefore, an appealing therapeutic target in α-synucleinopathies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Alfa-Sinucleína / Sinucleinopatías Límite: Animals Idioma: En Revista: Mov Disord Asunto de la revista: NEUROLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Alfa-Sinucleína / Sinucleinopatías Límite: Animals Idioma: En Revista: Mov Disord Asunto de la revista: NEUROLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania
...