Your browser doesn't support javascript.
loading
Multimodal Artificial Neurological Sensory-Memory System Based on Flexible Carbon Nanotube Synaptic Transistor.
Wan, Haochuan; Zhao, Junyi; Lo, Li-Wei; Cao, Yunqi; Sepúlveda, Nelson; Wang, Chuan.
Afiliación
  • Cao Y; State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
  • Sepúlveda N; Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States.
ACS Nano ; 15(9): 14587-14597, 2021 09 28.
Article en En | MEDLINE | ID: mdl-34472329
ABSTRACT
As the initial stage in the formation of human intelligence, the sensory-memory system plays a critical role for human being to perceive, interact, and evolve with the environment. Electronic implementation of such biological sensory-memory system empowers the development of environment-interactive artificial intelligence (AI) that can learn and evolve with diversified external information, which could potentially broaden the application of the AI technology in the field of human-computer interaction. Here, we report a multimodal artificial sensory-memory system consisting of sensors for generating biomimetic visual, auditory, tactile inputs, and flexible carbon nanotube synaptic transistor that possesses synapse-like signal processing and memorizing behaviors. The transduction of physical signals into information-containing, presynaptic action potentials and the synaptic plasticity of the transistor in response to single and long-term action potential excitations have been systematically characterized. The bioreceptor-like sensing and synapse-like memorizing behaviors have also been demonstrated. On the basis of the memory and learning characteristics of the sensory-memory system, the well-known psychological model describing human memory, the "multistore memory" model, and the classical conditioning experiment that demonstrates the associative learning of brain, "Pavlov's dog's experiment", have both been implemented electronically using actual physical input signals as the sources of the stimuli. The biomimetic intelligence demonstrated in this neurological sensory-memory system shows its potential in promoting the advancement in multimodal, user-environment interactive AI.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transistores Electrónicos / Nanotubos de Carbono / Modelos Neurológicos Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Nano Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transistores Electrónicos / Nanotubos de Carbono / Modelos Neurológicos Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Nano Año: 2021 Tipo del documento: Article